
Shape Up
Stop Running in Circles and

Ship Work that Matters

R y a n S i n g e r

Contents

Foreword by Jason Fried 8

Acknowledgements 10

Introduction 11
Growing pains 11

Six-week cycles 14

Shaping the work 14

Making teams responsible 15

Targeting risk 15

How this book is organized 16

Part 1: Shaping

Principles of Shaping 20
Wireframes are too concrete 20

Words are too abstract 21

Case study: The Dot Grid Calendar 21

Property 1: It’s rough 24

Property 2: It’s solved 25

Property 3: It’s bounded 25

Who shapes 25

Two tracks 26

Steps to shaping 27

Set Boundaries 28
Setting the appetite 28

Fixed time, variable scope 29

“Good” is relative 30

Responding to raw ideas 31

Narrow down the problem 31

Case study: Defining “calendar” 32

Watch out for grab-bags 33

Boundaries in place 34

Find the Elements 35
Move at the right speed 35

Breadboarding 36

Fat marker sketches 41

Elements are the output 44

Room for designers 46

Not deliverable yet 46

No conveyor belt 47

Risks and Rabbit Holes 48
Different categories of risk 49

Look for rabbit holes 50

Case study: Patching a hole 51

Declare out of bounds 53

Cut back 54

Present to technical experts 54

De-risked and ready to write up 56

Write the Pitch 57
Ingredient 1. Problem 58

Ingredient 2. Appetite 59

Ingredient 3. Solution 60

Help them see it 60

Embedded Sketches 61

Annotated fat marker sketches 62

Ingredient 4. Rabbit holes 64

Ingredient 5. No Gos 64

Examples 64

Ready to present 67

How we do it in Basecamp 67

Part 2: Betting

Bets, Not Backlogs 72
No backlogs 72

A few potential bets 73

Decentralized lists 73

Important ideas come back 74

The Betting Table 75
Six-week cycles 75

Cool-down 76

Team and project sizes 77

The betting table 77

The meaning of a bet 78

Uninterrupted time 79

The circuit breaker 80

What about bugs? 81

Keep the slate clean 83

Place Your Bets 84
Look where you are 84

Existing products 84

New products 84

R&D mode 85

Production mode 86

Cleanup mode 87

Examples 88

Questions to ask 90

Does the problem matter? 90

Is the appetite right? 90

Is the solution attractive? 91

Is this the right time? 92

Are the right people available? 92

Post the kick-off message 93

Part 3: Building

Hand Over Responsibility 96
Assign projects, not tasks 96

Done means deployed 97

Kick-off 98

Getting oriented 100

Imagined vs discovered tasks 101

Get One Piece Done 103
Integrate one slice 103

Case study: Clients in projects 105

Programmers don’t need to wait 107

Affordances before pixel-perfect screens 107

Program just enough for the next step 110

Start in the middle 111

Map The Scopes 113
Organize by structure, not by person 113

The scope map 114

The language of the project 117

Case study: Message drafts 117

Discovering scopes 122

How to know if the scopes are right 123

Layer cakes 124

Icebergs 125

Chowder 126

Mark nice-to-haves with ~ 126

Show Progress 127
The tasks that aren’t there 127

Estimates don’t show uncertainty 129

Work is like a hill 129

Scopes on the hill 133

Status without asking 134

Nobody says “I don’t know” 136

Prompts to refactor the scopes 137

Build your way uphill 139

Solve in the right sequence 139

Decide When to Stop 142
Compare to baseline 143

Limits motivate trade-offs 144

Scope grows like grass 144

Cutting scope isn’t lowering quality 145

Scope hammering 145

QA is for the edges 147

When to extend a project 148

Move On 150
Let the storm pass 150

Stay debt-free 150

Feedback needs to be shaped 151

Conclusion 152
Key concepts 152

Get in touch 153

Appendices

How to Implement Shape Up in Basecamp 156
A Basecamp Team for shaping 156

Basecamp Projects for the cycle projects 158

To-Do Lists for scopes 160

Track scopes on the Hill Chart 161

Adjust to Your Size 165
Basic truths vs. specific practices 165

Small enough to wing it 166

Big enough to specialize 167

How to Begin to Shape Up 169
Option A: One six-week experiment 169

Option B: Start with shaping 170

Option C: Start with cycles 170

Fix shipping first 170

Focus on the end result 171

Glossary 172

About the Author 176

8

The way a team works has an enormous influence on what it can do.
The process, the methods, the practices, the approach, the disci-
pline, the trust, the communication style, the pace. The way—the
how—is foundational and fundamental.

You’ll often hear people say “execution is everything,” but that’s
not quite right. In fact, it’s often quite wrong.

When it comes to project work, and specifically software devel-
opment, executing something the wrong way can destroy morale,
grind teams down, erode trust, crunch gears, and wreck the ma-
chinery of long-term progress. So yeah, it’s “done,” but at what
cost? By doing, what have we done to ourselves? Do we really have
to do that again, over and over month after month, year after year?

How many projects have you been a part of that you’d want to do
over? How many projects have gone long, piled up at the end, and
burned people out? How many projects were essentially collections
of unreasonable expectations? How many projects turned teams
against each other, frustrated everyone from builder to stakeholder,
and ultimately would have been better off dying than delivering?

Sometimes execution is everything—everything that’s wrong. So
what does executing right look like?

Over the last few years, there’s been a heightened curiosity about
how we work at Basecamp. People often ask us how we get so much
done so quickly at such a high level of quality with such a small
team. And how we keep our teams together for years and years.

For one, we’re not into waterfall or agile or scrum. For two, we don’t

Foreword by Jason Fried

9C H A P T E R 1 -

line walls with Post-it notes. For three, we don’t do daily stand ups,
design sprints, development sprints, or anything remotely tied to
a metaphor that includes being tired and worn out at the end. No
backlogs, no Kanban, no velocity tracking, none of that.

We have an entirely different approach. One developed in isolation
over nearly 15 years of constant trial and error, taking note, iterat-
ing, honing in, and polishing up. We’ve shaped our own way.

Blog posts, workshops, and occasional conference talks have pro-
vided glimpses of our own unique process, but we’ve never laid it
bare for all to see. This book does just that.

Now that our process is fully formed, documented, and ready to
go, we’re here to share it with all those curious enough to listen to a
new way of doing things. Explorers, pioneers, those who don’t care
what everyone else is doing. Those who want to work better than
the rest.

Don’t think of this as a book. Think of it as a flashlight. You and your
team have fumbled around in the dark long enough. Now you’ve got
something bright and powerful to help you find a new way.

We hope you find it interesting, enlightening, and, most of
all, helpful.

Thanks for reading.

1 0

Jason Fried and David Heinemeier Hansson, Basecamp’s found-
ers, planted many of the seeds for this book. It is informed by
their values, Basecamp’s culture, and fifteen years of collaborative
trial-and-error.

Bob Moesta and Chris Spiek made pivotal contributions. This book
wouldn’t have come together without their help.

Yaneer Bar-Yam’s lectures at the New England Complex Systems
Institute helped me structure the method.

The expert designers and programmers at Basecamp tried, tested,
and improved these techniques over the years to ship real projects.
Their efforts make this a book of practice, not theory.

Acknowledgements

1 1C H A P T E R 1 - I N T R O D U C T I O N

This book is a guide to how we do product development at Base-
camp. It’s also a toolbox full of techniques that you can apply in
your own way to your own process.

Whether you’re a founder, CTO, product manager, designer, or de-
veloper, you’re probably here because of some common challenges
that all software companies have to face.

Growing pains
As software teams start to grow, some common struggles appear:

• Team members feel like projects go on
and on, with no end in sight.

• Product managers can’t find time to think
strategically about the product.

• Founders ask themselves: “Why can’t we get features
out the door like we used to in the early days?”

We saw these challenges first-hand at Basecamp as we grew from
four people to over fifty.

Basecamp started off in 2003 as a tool we built for ourselves. At the
time we were a consultancy designing websites for clients. Infor-
mation would get lost in the game of telephone between the client,
the designer, and the person managing the project. We wanted
Basecamp to be a centralized place where all parties could see
the work, discuss it, and know what to do next. It turned out lots
of companies had this “information slipping through the cracks”
problem. Today millions of people across all kinds of industries rely

Introduction

1 2

on Basecamp as their shared source of truth.

Three of us built the first version. Jason Fried, Basecamp’s founder,
led the design. His co-founder, David Heinemeier Hansson, pro-
grammed it (and created the well-known web framework Ruby on
Rails as a by-product). At the time I was a web designer with a focus
on usability and user interfaces. I executed Jason’s design direc-
tion for key features of the app and collaborated with him to fill in
details of the concept.

From the first prototypes in July 2003 to launch in February 2004,
David only worked ten hours a week. We knew we wouldn’t get any-
where with those ten hours of programming unless we used them
very deliberately. Our intense focus on “hammering” the scope to
fit within a given time budget was born under these constraints.

As the business grew, I started widening my skills. Working with
David and Ruby on Rails made the world of programming accessi-
ble to me. I learned the techniques programmers use to tame com-
plexity: things like factoring, levels of abstraction, and separation
of concerns. With one foot in the design world and one foot in the
programming world, I wondered if we could apply these software
development principles to the way we designed and managed
the product.

The first test of this idea came in 2009. By then we had hired a few
more programmers and offered four separate software-as-a-service
products. We wanted to bundle the products together into a seam-
less suite with single-sign-on and unified billing. It was a massive
technical undertaking with treacherous user-facing flows. Besides
getting the underlying architecture right, we had to interrupt cus-
tomers on their way in to the product and make them change their

1 3C H A P T E R 1 - I N T R O D U C T I O N

username and password for reasons that weren’t easy to explain.
I wore the designer and product manager hats on the project and
prototyped the breadboarding and scope mapping techniques
described in this book to manage the complexity.

We had such good results that we decided to apply the same tech-
niques again in 2012, when we redesigned Basecamp from scratch
for version 2.0. Again there was a lot of surface area to manage and
again the process was surprisingly smooth.

By 2015, we had a core team that had lived through these expe-
riences and hit an impressive stride. But we found it hard to ar-
ticulate what we were doing to new hires. Our product team had
quadrupled and everyone worked remotely. That made it hard to
pass on our intuitions. We needed language to describe what we
were doing and more structure to keep doing it at our new scale.

To manage this new capacity, we switched from ad-hoc project
lengths to repeating cycles. (It took some experimentation to find
the right cycle length: six weeks. More on that later.) We formalized
our pitching and betting processes. My role shifted again, from
design and product management to product strategy. I needed new
language, like the word “shaping”, to describe the up-front design
work we did to set boundaries and reduce risks on projects before
we committed them to teams.

Just as we were getting better at articulating the way we work to
ourselves, more and more of our friends and peers started coming
to us to ask how we do it. Finally Jason pulled me aside one day
and said, I think you should write a book about this.

This is the result. You can think of this as two books in one. First,
it’s a book of basic truths. I want it to give you better language to

1 4

describe and deal with the risks, uncertainties, and challenges that
come up whenever you do product development. Second, the book
outlines the specific processes we’re using to make meaningful
progress on our products at our current scale.

Here’s a short overview of the main ideas in the book.

Six-week cycles
First, we work in six-week cycles. Six weeks is long enough to
build something meaningful start-to-finish and short enough that
everyone can feel the deadline looming from the start, so they use
the time wisely. The majority of our new features are built and
released in one six-week cycle.

Our decisions are based on moving the product forward in the
next six weeks, not micromanaging time. We don’t count hours or
question how individual days are spent. We don’t have daily meet-
ings. We don’t rethink our roadmap every two weeks. Our focus is
at a higher level. We say to ourselves: “If this project ships after six
weeks, we’ll be really happy. We’ll feel our time was well spent.”
Then we commit the six weeks and leave the team alone to get
it done.

Shaping the work
Second, we shape the work before giving it to a team. A small
senior group works in parallel to the cycle teams. They define the
key elements of a solution before we consider a project ready to bet
on. Projects are defined at the right level of abstraction: concrete
enough that the teams know what to do, yet abstract enough that
they have room to work out the interesting details themselves.

When shaping, we focus less on estimates and more on our

1 5C H A P T E R 1 - I N T R O D U C T I O N

appetite. Instead of asking how much time it will take to do some
work, we ask: How much time do we want to spend? How much is
this idea worth? This is the task of shaping: narrowing down the
problem and designing the outline of a solution that fits within the
constraints of our appetite.

Making teams responsible
Third, we give full responsibility to a small integrated team of
designers and programmers. They define their own tasks, make
adjustments to the scope, and work together to build vertical slices
of the product one at a time. This is completely different from other
methodologies, where managers chop up the work and program-
mers act like ticket-takers.

Together, these concepts form a virtuous circle. When teams are
more autonomous, senior people can spend less time managing
them. With less time spent on management, senior people can
shape up better projects. When projects are better shaped, teams
have clearer boundaries and so can work more autonomously.

Targeting risk
At every step of the process we target a specific risk: the risk of not
shipping on time. This book isn’t about the risk of building the
wrong thing. Other books can help you with that (we recommend
Competing Against Luck). Improving your discovery process should
come after regaining your ability to ship. You can have the best
strategy in the world, but if you can’t act on it, what good does
it do?

This book is about the risk of getting stuck, the risk of getting
bogged down with last quarter’s work, wasting time on unexpected

1 6

problems, and not being free to do what you want to do tomorrow.

We reduce risk in the shaping process by solving open questions
before we commit the project to a time box. We don’t give a project
to a team that still has rabbit holes or tangled interdependencies.

We reduce risk in the planning process by capping our bets to six
weeks. If a project runs over, by default it doesn’t get an extension.
This “circuit breaker” ensures that we don’t invest multiples of the
original appetite on a concept that needs rethinking first.

And lastly we reduce risk in the building process by integrating
design and programming early. Instead of building lots of discon-
nected parts and hoping they’ll fit together in the 11th hour, we
build one meaningful piece of the work end-to-end early on and
then repeat. The team sequences the work from the most unknown
to the least worrisome pieces and learns what works and what
doesn’t by integrating as soon as possible.

How this book is organized
Part One is all about Shaping — the pre-work we do on projects
before we consider them ready to schedule. Each chapter explains
a specific step of the process, from setting the appetite on a raw
idea, to sketching out a solution, to writing a pitch that presents
the potential project. Along the way you’ll learn specific techniques

— like breadboarding and fat-marker sketching — to keep the design
at the right level of abstraction.

Part Two is about Betting — how we choose among the pitched
projects and decide what to do six weeks at a time.

Part Three is about Building — the expectations we place on the
teams and the special practices they use to discover what to do.

1 7C H A P T E R 1 - I N T R O D U C T I O N

We’ll look at how the teams figure out what to do, how they in-
tegrate design and programming, how they track what’s known
versus unknown, and finally how they make the hard calls to finish
the project on time.

Lastly the Appendix gives you some help for when it’s time to make
changes at your company. There’s some advice on how to try your
first six-week experiment, tips on adjusting the methods to your
company’s size, and specific guidance for how to implement Shape
Up using Basecamp.

Shaping
P A R T O N E

2 0

When we shape the work, we need to do it at the right level of
abstraction: not too vague and not too concrete. Product managers
often err on one of these two extremes.

Wireframes are too concrete
When design leaders go straight to wireframes or high-fidelity
mockups, they define too much detail too early. This leaves design-
ers no room for creativity. One friend put it this way:

I’ll give a wireframe to my designer, and then I’m saying to her:
“I know you’re looking at this, but that’s not what I want you to
design. I want you to re-think it!” It’s hard to do that when you’re
giving them this concrete thing.

Over-specifying the design also leads to estimation errors. Counter-
intuitive as it may seem, the more specific the work is, the harder it
can be to estimate. That’s because making the interface just so can

Principles of Shaping

2 1C H A P T E R 2 - P R I N C I P L E S O F S H A P I N G

require solving hidden complexities and implementation details
that weren’t visible in the mockup. When the scope isn’t variable,
the team can’t reconsider a design decision that is turning out to
cost more than it’s worth.

Words are too abstract
On the other end of the spectrum, projects that are too vague don’t
work either. When a project is defined in a few words, nobody
knows what it means. “Build a calendar view” or “add group
notifications” sound sensible, but what exactly do they entail?
Team members don’t have enough information to make trade-offs.
They don’t know what to include or leave out. A programmer who
worked in that situation said:

You’re solving a problem with no context. You have to be a mind
reader. It’s like: “we’ll know it when we see it.”

Concerning estimation, under-specified projects naturally grow out
of control because there’s no boundary to define what’s out of scope.

Case study: The Dot Grid Calendar
Let’s look at an example of how to shape a project at the right level
of detail.

We launched version three of Basecamp without a calendar feature.
It had a “schedule” feature that just listed events one after the other
without any kind of monthly, weekly or daily grid.

Soon after launch, customers started asking us to “add a calendar”
to Basecamp. We had built calendars before and we knew how
complex they are. It can easily take six months or more to build a
proper calendar.

2 2

These are the kinds of things that make a calendar complicated:

• Dragging and dropping events between cells to move them

• Wrapping multi-day events around the edge of the screen

• Different views for monthly, weekly, or daily time scales

• Dragging the edge of an event to change its duration

• Color coding events for different categories

• Handling different expectations for
desktop vs. mobile interactions

Past versions of Basecamp had calendars, and only about 10% of
customers used them. That’s why we didn’t have the appetite for
spending six months on a calendar. On the other hand, if we could
do something to satisfy those customers who were writing us in one
six week cycle, we were open to doing that.

With only six weeks to work with, we could only build about a tenth
of what people think of when they say “calendar.” The question
became: which tenth?

We did some research (discussed in the next chapter) and narrowed
down a use case that we wanted to solve. We eventually arrived at
a promising concept inspired by calendars on phones. We could
build a two-month, read-only grid view. Any day with an event
would have a dot for each event. A list of events would appear
below the calendar, and clicking a day with a dot would scroll the
events for that day into view. We called it the Dot Grid.

The Dot Grid wasn’t a full-featured calendar. We weren’t going to
allow dragging events between days. We weren’t going to span

2 3C H A P T E R 2 - P R I N C I P L E S O F S H A P I N G

multi-day events across the grid; we’d just repeat the dots. There’d
be no color coding or categories for events. We were comfortable
with all these trade-offs because of our understanding of the
use case.

This is the level of fidelity we used to define the solution:

Note how rough the sketch is and how many details are left out.
The designer had a lot of room to interpret how this should look
and feel.

Rough sketch of the Dot Grid concept

2 4

At the same time, note how specific the idea is. It’s very clear how it
works, what needs to be built, what’s in and what’s out.

At the end of the project, the finished work that the designers and
programmers created looked like this:

This small example highlights a few properties of shaped work.

Property 1: It’s rough
Work in the shaping stage is rough. Everyone can tell by looking
at it that it’s unfinished. They can see the open spaces where
their contributions will go. Work that’s too fine, too early commits

Screenshot of the Dot Grid when it launched

2 5C H A P T E R 2 - P R I N C I P L E S O F S H A P I N G

everyone to the wrong details. Designers and programmers need
room to apply their own judgement and expertise when they roll up
their sleeves and discover all the real trade-offs that emerge.

Property 2: It’s solved
Despite being rough and unfinished, shaped work has been
thought through. All the main elements of the solution are there at
the macro level and they connect together. The work isn’t specified
down to individual tasks, but the overall solution is spelled out.
While surprises might still happen and icebergs could still emerge,
there is clear direction showing what to do. Any open questions or
rabbit holes we could see up front have been removed to reduce the
project’s risk.

Property 3: It’s bounded
Lastly, shaped work indicates what not to do. It tells the team where
to stop. There’s a specific appetite—the amount of time the team
is allowed to spend on the project. Completing the project within
that fixed amount of time requires limiting the scope and leaving
specific things out.

Taken together, the roughness leaves room for the team to resolve
all the details, while the solution and boundaries act like guard
rails. They reduce risk and channel the team’s efforts, making sure
they don’t build too much, wander around, or get stuck.

Who shapes
Shaping is creative and integrative. It requires combining interface
ideas with technical possibilities with business priorities. To do
that you’ll need to either embody these skills as a generalist or
collaborate with one or two other people.

2 6

Shaping is primarily design work. The shaped concept is an interac-
tion design viewed from the user’s perspective. It defines what the
feature does, how it works, and where it fits into existing flows.

You don’t need to be a programmer to shape, but you need to be
technically literate. You should be able to judge what’s possible,
what’s easy and what’s hard. Knowledge about how the system
works will help you see opportunities or obstacles for implement-
ing your idea.

It’s also strategic work. Setting the appetite and coming up with a
solution requires you to be critical about the problem. What are we
trying to solve? Why does it matter? What counts as success? Which
customers are affected? What is the cost of doing this instead of
something else?

Shaping is a closed-door, creative process. You might be alone
sketching on paper or in front of a whiteboard with a close col-
laborator. There’ll be rough diagrams in front of you that nobody
outside the room would be able to interpret. When working with
a collaborator, you move fast, speak frankly and jump from one
promising position to another. It’s that kind of private, rough,
early work.

Two tracks
You can’t really schedule shaping work because, by its very nature,
unshaped work is risky and unknown. For that reason we have
two separate tracks: one for shaping, one for building. During any
six week cycle, the teams are building work that’s been previously
shaped and the shapers are working on what the teams might po-
tentially build in a future cycle. Work on the shaping track is kept
private and not shared with the wider team until the commitment

2 7C H A P T E R 2 - P R I N C I P L E S O F S H A P I N G

has been made to bet on it. That gives the shapers the option to put
work-in-progress on the shelf or drop it when it’s not working out.

Steps to shaping
Shaping has four main steps that we will cover in the next
four chapters.

1. Set boundaries. First we figure out how much time
the raw idea is worth and how to define the problem.
This gives us the basic boundaries to shape into.

2. Rough out the elements. Then comes the creative work
of sketching a solution. We do this at a higher level of
abstraction than wireframes in order to move fast and
explore a wide enough range of possibilities. The output
of this step is an idea that solves the problem within the
appetite but without all the fine details worked out.

3. Address risks and rabbit holes. Once we think we have a
solution, we take a hard look at it to find holes or unanswered
questions that could trip up the team. We amend the solu-
tion, cut things out of it, or specify details at certain tricky
spots to prevent the team from getting stuck or wasting time.

4. Write the pitch. Once we think we’ve shaped it enough to
potentially bet on, we package it with a formal write-up called
a pitch. The pitch summarizes the problem, constraints, solu-
tion, rabbit holes, and limitations. The pitch goes to the betting
table for consideration. If the project gets chosen, the pitch
can be re-used at kick-off to explain the project to the team.

2 8

The first step of shaping is setting boundaries on what we’re trying
to do. The conversations we have are going to be entirely different if
people think we’re talking about a small improvement or a
major redesign.

The conversation about building a feature always starts with a raw
idea, like “customers are asking for group notifications.” Before
we all go down the rabbit hole discussing ways we can solve it, we
should first set some broad terms on the discussion to make
it productive.

Setting the appetite
Sometimes an idea gets us excited right away. In that case we need
to temper the excitement by checking whether this is really some-
thing we’re going to be able to invest time in or not. If we don’t stop
to think about how valuable the idea is, we can all jump too quickly
to either committing resources or having long discussions about
potential solutions that go nowhere.

Set Boundaries

2 9C H A P T E R 3 - S E T B O U N D A R I E S

Other ideas are less exciting and feel more like a challenge we
didn’t ask for. The customer wants a calendar; we don’t particularly
want to build one, but we do feel we need to do something about
the request.

Whether we’re chomping at the bit or reluctant to dive in, it helps
to explicitly define how much of our time and attention the subject
deserves. Is this something worth a quick fix if we can manage?
Is it a big idea worth an entire cycle? Would we redesign what we
already have to accommodate it? Will we only consider it if we can
implement it as a minor tweak?

We call this the appetite. You can think of the appetite as a time
budget for a standard team size. We usually set the appetite in
two sizes:

• Small Batch: This is a project that a team of one designer and
one or two programmers can build in one or two weeks. We
batch these together into a six week cycle (more on that later).

• Big Batch: This project takes the same-size team a full six-weeks.

In rare cases where the scope is so big that a six-week project isn’t
conceivable, we’ll try to hammer it down by narrowing the problem
definition. If we still can’t shrink the scope, we’ll break off a mean-
ingful part of the project that we can shape to a six-week appetite.

Fixed time, variable scope
An appetite is completely different from an estimate. Estimates
start with a design and end with a number. Appetites start with a
number and end with a design. We use the appetite as a creative
constraint on the design process.

3 0

This principle, called “fixed time, variable scope,” is key to success-
fully defining and shipping projects. Take this book for an example.
It’s hard to ship a book when you can always add more, explain
more, or improve what’s already there. When you have a dead-
line, all of a sudden you have to make decisions. With one week
left, I can choose between fixing typos or adding a new section to
a chapter. That’s the tension between time, quality, and scope. I
don’t want to release a book with embarrassing typos, so I’ll choose
to reduce the scope by leaving out the extra section. Without the
pressure of the fixed deadline, I wouldn’t make the trade-off. If the
scope wasn’t variable, I’d have to include the extra section. Then
there’d be no time to fix the quality issues.

We apply this principle at each stage of the process, from shaping
potential projects to building and shipping them. First, the appetite
constrains what kind of a solution we design during the shaping
process. Later, when we hand the work to a team, the fixed time box
pushes them to make decisions about what is core to the project
and what is peripheral or unnecessary.

“Good” is relative
There’s no absolute definition of “the best” solution. The best is
relative to your constraints. Without a time limit, there’s always a
better version. The ultimate meal might be a ten course dinner. But
when you’re hungry and in a hurry, a hot dog is perfect.

The amount of time we set for our appetite is going to lead us to dif-
ferent solutions. We could model a whole set of database columns
in the fancy version, or just provide a flat textarea in the simple
version. We could redesign the main landing page to accommo-
date a new feature, or we could push it back to a screen with fewer

3 1C H A P T E R 3 - S E T B O U N D A R I E S

design constraints. We can only judge what is a “good” solution in
the context of how much time we want to spend and how important
it is.

Responding to raw ideas
Our default response to any idea that comes up should be: “In-
teresting. Maybe some day.” In other words, a very soft “no” that
leaves all our options open. We don’t put it in a backlog. We give
it space so we can learn whether it’s really important and what it
might entail.

It’s too early to say “yes” or “no” on first contact. Even if we’re
excited about it, we shouldn’t make a commitment that we don’t
yet understand. We need to do work on the idea before it’s shaped
enough to bet resources on. If we always say “yes” to incoming
requests we’ll end up with a giant pile of work that only grows.

It’s important to keep a cool manner and a bit of a poker face. We
don’t want to shut down an idea that we don’t understand. New in-
formation might come in tomorrow that makes us see it differently.
On the other hand, showing too much enthusiasm right away can
set expectations that this thing is going to happen. We may not be
able to commit to it once we’ve put it into context with everything
else we want to do.

Narrow down the problem
In addition to setting the appetite, we usually need to narrow down
our understanding of the problem.

We once had a customer ask us for more complex permission
rules. It could easily have taken six weeks to build the change she
wanted. Instead of taking the request at face value, we dug deeper.

3 2

It turned out that someone had archived a file without knowing the
file would disappear for everyone else using the system. Instead of
creating a rule to prevent some people from archiving, we realized
we could put a warning on the archive action itself that explains
the impact. That’s a one-day change instead of a six-week project.

Another example is the “calendar view” from the previous chapter.
Everyone knows what a calendar view is. But unpacking it revealed
tons of unknowns and decisions that would drastically affect the
scope. If we only want to spend six weeks instead of six months
building a huge calendar, how do we narrow it down?

In that case we flip from asking “What could we build?” to “What’s
really going wrong?” Sure, a calendar sounds nice. But what is
driving the request? At what point specifically does someone’s
current workflow break down without this thing they’re asking for?

Case study: Defining “calendar”
In the case of the calendar request, we called a customer who asked
for this feature. Instead of asking her why she wants a calendar and
what it should look like, we asked her when she wanted a calendar.
What was she doing when the thought occurred to ask for it?

She told us she worked in an office with a big calendar drawn on a
chalkboard wall. Her officemates marked when they were meeting
clients in the handful of meeting rooms on the calendar. One
day she was working from home. A client called and asked her to
schedule a meeting. She had to drive to the office to look at the wall
calendar. Traffic was terrible along the way, and in the end there
wasn’t a free space that worked for her client. She could have saved
an hour in traffic and a lot of frustration if she had been able to
check for open spots on the calendar from her computer at home.

3 3C H A P T E R 3 - S E T B O U N D A R I E S

The insight wasn’t “computerize the calendar”—that’s obvious.
What we learned was that “see free spaces” was the important
thing for this use case, not “do everything a calendar does.”

This story, and others like it, gave us a specific baseline to design
against. Basecamp had an agenda view of events. It worked for
listing major deadlines and milestones but it wasn’t good for re-
source scheduling because you couldn’t see empty spaces on it. We
narrowed down the need from “do everything a calendar does” to

“help me see free spaces so I can figure out when to
schedule something.”

We didn’t have a solution yet. But now we felt like we had a
problem that was specific enough to spark an idea that could fit
within our appetite. This led us to the simpler “Dot Grid” concept
from the last chapter.

What if we can’t figure out a specific pain point or use case? Our
appetite can also tell us how much research is worthwhile. If it’s
not critical now and we can’t get our hands around the problem,
we’ll walk away from it and work on something else. Maybe in the
future a new request or story will pop up that gives us better insight
into the problem.

Watch out for grab-bags
When it comes to unclear ideas, the worst offenders are “rede-
signs” or “refactorings” that aren’t driven by a single problem or
use case. When someone proposes something like “redesign the
Files section,” that’s a grab-bag, not a project. It’s going to be very
hard to figure out what it means, where it starts, and where it ends.
Here’s a more productive starting point: “We need to rethink the
Files section because sharing multiple files takes too many steps.”

3 4

Now we can start asking: What’s not working? In what context are
there too many steps? What parts of the existing design can stay the
same and what parts need to change?

A tell-tale sign of a grab-bag is the “2.0” label. We made the mistake
in the past of kicking off a “Files 2.0” project without really consid-
ering what that meant. Our excitement about improving a huge part
of our app got the better of us. We know there were a lot of prob-
lems with our Files feature, but we didn’t ask ourselves what spe-
cifically we were going to do. The project turned out to be a mess
because we didn’t know what “done” looked like. We recovered by
splitting the project into smaller projects, like “Better file previews”
and “Custom folder colors.” We set appetites and clear expectations
on each project and shipped them successfully.

Boundaries in place
When we have all three things—a raw idea, an appetite, and a
narrow problem definition—we’re ready to move to the next step
and define the elements of a solution.

3 5C H A P T E R 4 - F I N D T H E E L E M E N T S

Now that we have the constraints of an appetite and the problem
we’re solving, it’s time to get from an idea in words to the elements
of a software solution. There could be dozens of different ways to
approach the solution for a problem. So it’s important that we can
move fast and cover a lot of different ideas without getting
dragged down.

Move at the right speed
Two things enable us to move at the right speed at this stage.

First, we need to have the right people—or nobody—in the room.
Either we’re working alone or with a trusted partner who can keep
pace with us. Someone we can speak with in shorthand, who has
the same background knowledge, and who we can be frank with as
we jump between ideas.

Second, we need to avoid the wrong level of detail in the drawings

Find the Elements

3 6

and sketches. If we start with wireframes or specific visual layouts,
we’ll get stuck on unnecessary details and we won’t be able to
explore as broadly as we need to.

The challenge here is to be concrete enough to make progress on
a specific solution without getting dragged down into fine details.
The questions we’re trying to answer are:

• Where in the current system does the new thing fit?

• How do you get to it?

• What are the key components or interactions?

• Where does it take you?

To stay on the right level of detail and capture our thoughts as
they come, we work by hand using a couple of prototyping tech-
niques: breadboarding and fat marker sketches. These allow us to
quickly draw different versions of entire flows so we can debate the
pros and cons of each approach and stay aligned with what we’re
talking about as we go.

Breadboarding
We borrow a concept from electrical engineering to help us design
at the right level of abstraction. A breadboard is an electrical engi-
neering prototype that has all the components and wiring of a real
device but no industrial design.

3 7C H A P T E R 4 - F I N D T H E E L E M E N T S

Deciding to include an indicator light and a rotary knob is very dif-
ferent from debating the chassis material, whether the knob should
go to the left of the light or the right, how sharp the corners should
be, and so on.

Similarly, we can sketch and discuss the key components and con-
nections of an interface idea without specifying a particular visual
design. To do that, we can use a simple shorthand. There are three
basic things we’ll draw:

1. Places: These are things you can navigate to, like
screens, dialogs, or menus that pop up.

2. Affordances: These are things the user can act on, like
buttons and fields. We consider interface copy to
be an affordance, too. Reading it is an act that gives
the user information for subsequent actions.

3. Connection lines: These show how the affor-
dances take the user from place to place.

We’ll use words for everything instead of pictures. The important
things are the components we’re identifying and their connections.
They allow us to play out an idea and judge if the sequence of
actions serves the use case we’re trying to solve.

Example
Suppose our product is an invoicing tool. We’re considering adding
a new “Autopay” feature to enable our customers’ customers to pay
future invoices automatically.

How do you turn Autopay on? What’s involved? We can pick a start-
ing point and say that the customer landed on an invoice. That’s

3 8

 our first place. We draw it by writing the name of the place and
underlining it.

On the invoice, we’re thinking we could add a new button to “Turn
on Autopay.” That’s an affordance. Affordances go below the line to
indicate they can be found at that place.

Where does that button go? Some place for setting up the Autopay.
We don’t have to specify whether it’s a separate screen or a pop up
modal or what. From a what’s-connected-to-what standpoint (the
topology) it’s all the same. Let’s draw a connection line from the
button to the Setup Autopay screen.

Now we can talk about what belongs on that screen. Do we ask for
a credit card here? Is there a card on file already? What about ACH
or other payment methods?

Just figuring out what to write under the bar starts to provoke

3 9C H A P T E R 4 - F I N D T H E E L E M E N T S

debates and discussions about what to build.

As we think it through, we decide we should ask for credit card
details here and show the logo of the financial institution (an
aspect of the domain in this specific product).

Straightforward enough. But wait — did we actually pay the origi-
nal invoice or not? Hm. Now we have both functional and interface
questions. What does enabling Autopay actually do? Does it apply
only for the future or does paying with Autopay the first time also
pay the current invoice? And where do we explain this behavior?
We’re starting to have deeper questions and discussions prompted
by just a few words and arrows in the breadboard.

Since we’re using such a lightweight notation, and we aren’t
bogged down with wireframes, we can quickly jump around and
entertain different possibilities.

We could add an option to the Setup screen…

4 0

But now we’re complicating the responsibilities of the confirma-
tion screen. We’re going to need to show a receipt if you pay your
balance now. Should the confirmation have a condition to some-
times show a receipt of the amount just paid?

How about an entirely different approach. Instead of starting on
an Invoice, we make Autopay an option when making a payment.
This way there’s no ambiguity about whether the current amount is
being paid. We could add an extra “Autopay was enabled” callout
to the existing payment confirmation page.

Sketching this out reminded us that the current payment form sup-
ports ACH in addition to credit card. We discuss and confirm that
we can use ACH too.

What about after Autopay is enabled? How does the customer turn
it off? Up to this point, many customers in the system didn’t have
usernames or passwords. They followed tokenized links to pay the
invoices one by one. One might naturally assume that now that the
customer has something like Autopay, they need a username and
password and some landing place to go manage it.

The team in this case decided that adding the username/password

4 1C H A P T E R 4 - F I N D T H E E L E M E N T S

flows was too much scope for their appetite at the time. Reflecting
strategically on what they knew about their customers, they thought
it would be quite alright if the invoicer’s customers had to reach out
to the invoicer and ask them to turn off the Autopay. In that case we
could add a single option to disable Autopay in the customer detail
page that we already offered to invoicers. We drew out the flow
like this:

This example illustrates the level of thinking and the speed of
movement to aim for during the breadboarding phase. Writing out
the flows confronts us with questions we didn’t originally think of
and stimulates design ideas without distracting us with unimport-
ant visual choices.

Once we get to a place where we play through the use case and the
flow seems like a fit, we’ve got the elements we need to move on to
start defining the project more clearly. We’re getting more concrete
while still leaving out a huge amount of detail.

Fat marker sketches
Sometimes the idea we have in mind is a visual one. Breadboarding
would just miss the point because the 2D arrangement of elements
is the fundamental problem. In that case, we still don’t want to

4 2

waste time on wireframes or unnecessary fidelity. Instead we use
fat marker sketches.

A fat marker sketch is a sketch made with such broad strokes that
adding detail is difficult or impossible. We originally did this with
larger tipped Sharpie markers on paper. Today we also do it on
iPads with the pen size set to a large diameter.

Here’s an example. We found ourselves often creating fake to-dos
in our Basecamp to-do lists that acted as dividers. We’d create an
item like “––– Needs testing –––“ and put items below it. We had
the idea to make some kind of official divider feature in our to-do
tool to turn the workaround into a first class function of to-do lists.

We had to work out what the implications of adding a divider were.
We came up with a rough idea that adding a divider separates the
list into “loose” to-dos above the divider and “grouped” to-dos
below. Adding subsequent dividers adds more groups below the

“loose” items at the top.

4 3C H A P T E R 4 - F I N D T H E E L E M E N T S

We could add items via some affordance within each group, includ-
ing the “loose” group on top.

We were a little concerned the add buttons might break up the
gestalt of the list, and the groups might all separate too much from
the lists on the page. We talked about possibilities to place the

“add” affordance inside of a menu that we already had to the left of
each to-do item.

4 4

This notation is much less constraining than breadboards, which
has downsides. We might sketch a sidebar and get attached to a
layout element like that even though it’s not a core element. But as
long as we keep an eye on that we’re still far better off than if we get
sucked into the weeds by creating wireframes too early.

It may seem a little silly to call fat marker sketches a technique or
a tool. The reason for calling them out is we too easily skip ahead
to the wrong level of fidelity. Giving this rough early stage a name
and using a specific tool for it helps us to segment our own creative
process and make sure we aren’t jumping ahead to detail a specific
idea when we haven’t surveyed the field enough.

Elements are the output
In the case of the Autopay example, we ended up with some
clear elements:

• A new “use this to Autopay?” checkbox on
the existing “Pay an invoice” screen

• A “disable Autopay” option on the invoicer’s side

For the To-Do Groups project, the elements were:

• Loose to-dos above the first group belong directly to the parent

• Grouped to-dos appear below the loose to-dos

• We’d like to try an add affordance within each section, but
if that doesn’t work visually, we’re ok with relying on
the action menu for inserting to-dos into position.

4 5C H A P T E R 4 - F I N D T H E E L E M E N T S

Similarly, when we sketched the simplified solution for rendering
events on a calendar grid, we used the fat marker approach.

This enabled us to work out the main elements of the solution:

• A 2-up monthly calendar grid

• Dots for events, no spanned pills

• Agenda-style list of events below that scrolls
an event into view when you tap a dot

This list of elements is extremely narrow and specific compared
to “monthly calendar.” Exactly the kind of narrowing we hope to
accomplish through the shaping process.

4 6

Room for designers
Later, when it’s time to involve a designer, you don’t want to have to
say “I know I drew it like this but ignore that…”. Regardless of what
you say, any specific mockups are going to bias what other people
do after you—especially if you’re in a higher position than them.
They’ll take every detail in the initial mockups as direction even
though you didn’t intend it.

Working at the right “level of abstraction” not only ensures we
move at the right speed, it also leaves this important room for cre-
ativity in the later stages.

By leaving details out, the breadboard and fat marker methods give
room to designers in subsequent phases of the project.

This is a theme of the shaping process. We’re making the project
more specific and concrete, but still leaving lots of space for deci-
sions and choices to be made later. This isn’t a spec. It’s more like
the boundaries and rules of a game. It could go in countless differ-
ent ways once it’s time to play.

Not deliverable yet
This step of shaping is still very much in your private sphere. It’s
normal for the artifacts at this point — on the wall or in your note-
book — to be more or less indecipherable to anybody who wasn’t
there with you.

We’ve gone from a cloudy idea, like “autopay” or “to-do groups,”
to a specific approach and a handful of concrete elements. But the
form we have is still very rough and mostly in outline.

What we’ve done is landed on an approach for how to solve the

4 7C H A P T E R 4 - F I N D T H E E L E M E N T S

problem. But there may be some significant unknowns or things we
need to address before we’d consider this safe to hand off to a team
to build successfully.

The next step is to do some stress-testing and de-risking. We want
to check for holes and challenges that could hinder the project from
shipping within the fixed time appetite that we have in mind for it.

After that we’ll see how to wrap up the shaped concept into a
write-up for pitching.

No conveyor belt
Also keep in mind that, at this stage, we could walk away from the
project. We haven’t bet on it. We haven’t made any commitments or
promises about it. What we’ve done is added value to the raw idea
by making it more actionable. We’ve gotten closer to a good option
that we can later lobby for when it’s time to allocate resources.

4 8

Remember that we’re shaping work for a fixed time window. We
may trust from our experience that the elements we fleshed out in
the previous chapter are buildable within the appetite (six weeks).
But we need to look closer, because all it takes is one hole in the
concept to derail that. Suppose we bet on the project and a team
takes it on. If they run into an unanticipated problem that takes
two weeks to solve, they just burned a third of the budget!

Even worse, sometimes you run into problems that don’t just delay
the project—they have no apparent solution. We once bet on a
project to redesign the way we present projects with clients on
Basecamp’s home screen. We assumed the designer would figure it
out; we didn’t do the work in the shaping phase to validate that a
viable approach existed. Once the project started, it turned out to
be a much harder problem than we expected. None of us were able
to find a suitable design solution within the six weeks we budgeted.
We ended up abandoning the project and rethinking it later.

Risks and Rabbit Holes

4 9C H A P T E R 5 - R I S K S A N D R A B B I T H O L E S

Of course there will always be unknowns. That’s why we apply the
many practices in Part Three so that teams tackle the right prob-
lems in the right order, leaving room for the unexpected. But that
doesn’t mean we shouldn’t look for the pitfalls we can find up front
and eliminate them before betting on the project. Before we con-
sider it safe to bet on, a shaped project should be as free of holes
as possible.

Different categories of risk
In terms of risk, well-shaped work looks like a thin-tailed probabil-
ity distribution. There’s a slight chance it could take an extra week
but, beyond that, the elements of the solution are defined enough
and familiar enough that there’s no reason it should drag on longer
than that.

However, if there are any rabbit holes in the shaping—technical un-
knowns, unsolved design problems, or misunderstood interdepen-
dencies—the project could take multiple times the original appetite
to complete. The right tail stretches out.

5 0

We want to remove the unknowns and tricky problems from the
project so that our probability is as thin-tailed as possible. That
means a project with independent, well-understood parts that
assemble together in known ways.

Look for rabbit holes
Fleshing out the elements of the solution was a fast-moving, ex-
ploratory process. It was more breadth than depth. In this step, we
slow down and look critically at what we came up with. Did we miss
anything? Are we making technical assumptions that aren’t fair?

One way to analyze the solution is to walk through a use case in
slow motion. Given the solution we sketched, how exactly would
a user get from the starting point to the end? Slowing down and
playing it out can reveal gaps or missing pieces that we need
to design.

Then we should also question the viability of each part we think we
solved. We ask ourselves questions like:

• Does this require new technical work we’ve never done before?

• Are we making assumptions about how the parts fit together?

5 1C H A P T E R 5 - R I S K S A N D R A B B I T H O L E S

• Are we assuming a design solution exists that
we couldn’t come up with ourselves?

• Is there a hard decision we should settle in
advance so it doesn’t trip up the team?

Case study: Patching a hole
For example, when we defined the To-Do Groups project, we intro-
duced the idea of dividers in the to-do list:

We liked the idea of the dividers, and the logic of loose versus
grouped to-dos made sense to us. But when we looked closer we
realized that we didn’t address how to display completed items. In
the pre-existing design, the latest few completed items displayed
below the list. Should we now render completed items at the
bottom of each group instead of the list? Or should we continue to
show completed items at the bottom, and repeat the same set of
dividers within the completed items section? Should we reconsider
how we handle completed items entirely?

5 2

This was a hole in the concept. If we didn’t address it, we’d be
pushing a deep design problem down to the team and unreason-
ably asking them to find a solution under deadline. It’s not respon-
sible to give the team a tangled knot of interdependencies and then
ask them to untangle it within a short fixed time window.

We knew from experience that changing the way completed to-dos
render has lots of complicated implications in user experience, navi-
gation, and performance. To remove uncertainty in the project, we
decided to dictate a solution in the shaped concept. We would leave
the completed items exactly as they worked previously. Instead of
grouping or segmenting them, we would just append the name of
the group to each completed item. It would be a little messy, but we
justified the trade-off: it drastically simplified the problem, and we
could still show completed items from a group on the group’s
detail page.

5 3C H A P T E R 5 - R I S K S A N D R A B B I T H O L E S

This is the kind of trade-off that’s difficult to make when you’re
working inside the cycle under pressure. There are lots of reasons
why a different design or a deeper reconsideration of completed
to-dos would be objectively better. Why not try rendering them
inside each group? A designer could reasonably think, “Maybe if I
experiment with the styling a little more I can make them blend in
better.” They could easily waste a few days of the very few weeks
they have going down a dead end.

As shapers, we’re thinking less about the ultimate design and more
about basic quality and risk. With the compromised concept we
get to keep all the elements that made the project worth doing—the
groups of incomplete items—and we get to cut off a big tail of risk.

Next, when we write the pitch for this project, we’ll point out this
specific “patch” as part of the concept. That way nobody down the
line will get tripped up on it.

Declare out of bounds
Since everyone on the team wants to do their best work, they will of
course look for all the use cases to cover and consider them neces-
sary. As the team gets more comfortable with scope hammering (see
Decide When to Stop), this improves. But it’s still a good idea to call
out any cases you specifically aren’t supporting to keep the project
well within the appetite.

For example, we worked on an idea for notifying groups of people
in Basecamp. Rather than checking off five programmers one by
one, you could just click “Programmers” and they’d be selected
for notification. As we looked at the product, we saw tons of places
where this kind of behavior might make sense. If we let you choose
a group when posting a message, why not when assigning a to-do,

5 4

or mentioning people in the chat room?

We decided for the purpose of the project that the core value was
narrowing down who to notify about a message. We explicitly
marked off the other cases as “out of bounds” for the project and
focused on the win we wanted: a faster flow for posting messages.

Cut back
There may be parts of the solution we got excited about during the
sketching phase that aren’t really necessary. When we designed the
To-Do Groups feature, we thought it would be great to color-code
groups. No doubt the page would look more interesting with col-
or-coded group labels, and the feature might be more useful too.
But we decided to flag this as unnecessary and cut it from the core
of the project. We could mention it to the team as a nice-to-have,
but everyone should start from the assumption that the feature is
valuable without it.

Present to technical experts
Up to this point shaping has been a closed-door activity. Before
you’re ready to write up the idea to share more widely, you might
need input on some parts of the concept you aren’t completely sure
about. There may be a technical assumption that you need to verify
with someone who understands the code better. Or perhaps you
want to make sure that usage data doesn’t contradict an assump-
tion you’re making about current customer behavior.

This is a good time to grab some technical experts and walk
them through the idea. Communicate that this is just an idea. It’s
something you’re shaping as a potential bet, not something that’s
coming down the pipe yet. The mood is friendly-conspiratorial:

5 5C H A P T E R 5 - R I S K S A N D R A B B I T H O L E S

“Here’s something I’m thinking about… but I’m not ready to show
anybody yet… what do you think?”

Beware the simple question: “Is this possible?” In software, ev-
erything is possible but nothing is free. We want to find out if it’s
possible within the appetite we’re shaping for. Instead of asking “is
it possible to do X?” ask “is X possible in 6-weeks?” That’s a very
different question.

Talk through the constraints of how this is a good solution given
the appetite, so they’re partners in keeping the project at the size
you intend. And emphasize that you’re looking for risks that could
blow up the project. It’s not just a “what do you think” conversa-
tion—we’re really hunting for time bombs that might blow up the
project once it’s committed to a team.

Try to keep the clay wet. Rather than writing up a document or
creating a slideshow, invite them to a whiteboard and redraw the
elements as you worked them out earlier, building up the concept
from the beginning. Stick completely to the concept you already
worked out to get feedback on the work you’ve already done. Then
once you’ve covered the work you already did, open it up and invite
them to suggest revisions. Having seen this concept, do they have
any insights about how to drastically simplify or approach the
problem differently?

Depending on how the conversation goes, you may either have val-
idated your approach or discovered some problems that send you
back for another round of shaping.

5 6

De-risked and ready to write up
At the end of this stage, we have the elements of the solution,
patches for potential rabbit holes, and fences around areas we’ve
declared out of bounds. We’ve gone from a roughly formed solution
with potential risk in it to a solid idea that we now hope to bet on in
the future.

That means we’re ready to make the transition from privately
shaping and getting feedback from an inner-circle to presenting the
idea at the betting table. To do that, we write it up in a form that
communicates the boundaries and spells out the solution so that
people with less context will be able to understand and evaluate it.
This “pitch” will be the document that we use to lobby for resources,
collect wider feedback if necessary, or simply capture the idea for
when the time is more ripe in the future.

5 7C H A P T E R 6 - W R I T E T H E P I T C H

We’ve got the elements of a solution now, and we’ve de-risked our
concept to the point that we’re confident it’s a good option to give a
team. But the concept is still in our heads or in some hard-to-deci-
pher drawings on the whiteboard or our notebook. Now we need to
put the concept into a form that other people will be able to under-
stand, digest, and respond to.

This is where we say “Okay, this is ready to write up as a pitch.” In
this chapter, we’ll walk through the ingredients of a pitch and show
some fully worked out examples from real projects at Basecamp.

The purpose of the pitch is to present a good potential bet. It’s basi-
cally a presentation. The ingredients are all the things that we need
to both capture the work done so far and present it in a form that
will enable the people who schedule projects to make an
informed bet.

Write the Pitch

5 8

There are five ingredients that we always want to include in a pitch:

1. Problem — The raw idea, a use case, or something
we’ve seen that motivates us to work on this

2. Appetite — How much time we want to spend
and how that constrains the solution

3. Solution — The core elements we came up with, presented
in a form that’s easy for people to immediately understand

4. Rabbit holes — Details about the solution
worth calling out to avoid problems

5. No-gos — Anything specifically excluded from the concept:
functionality or use cases we intentionally aren’t cover-
ing to fit the appetite or make the problem tractable

Ingredient 1. Problem
It’s critical to always present both a problem and a solution to-
gether. It sounds like an obvious point but it’s surprising how often
teams, our own included, jump to a solution with the assumption
that it’s obvious why it’s a good idea to build this thing.

Diving straight into “what to build”—the solution—is dangerous.
You don’t establish any basis for discussing whether this solution
is good or bad without a problem. “Add tabs to the iPad app” might
be attractive to UI designers, but what’s to prevent the discussion
from devolving into a long debate about different UI approaches?
Without a specific problem, there’s no test of fitness to judge
whether one solution is better than the other.

Establishing the problem also lets us have a clearer conversation
later when it’s time to pitch the idea or bet on it. The solution might

5 9C H A P T E R 6 - W R I T E T H E P I T C H

be perfect, but what if the problem only happens to customers who
are known to be a poor fit to the product? We could spend six weeks
on an ingenious solution that only benefits a small percentage of
customers known to have low retention. We want to be able to sep-
arate out that discussion about the demand so we don’t spend time
on a good solution that doesn’t benefit the right people.

How far you have to go to spell out the problem will depend on
how much context you share with the people reading the write-up.
The best problem definition consists of a single specific story that
shows why the status quo doesn’t work. This gives you a base-
line to test fitness against. People will be able to weigh the solu-
tion against this specific problem—or other solutions if a debate
ensues—and judge whether or not that story has a better outcome
with the new solution swapped in.

Ingredient 2. Appetite
You can think of the appetite as another part of the problem defini-
tion. Not only do we want to solve this use case, we want to come
up with a way to do it in six weeks, not three months, or—in the
case of a small batch project—two weeks, not the whole six weeks.

Stating the appetite in the pitch prevents unproductive conversa-
tions. There’s always a better solution. The question is, if we only
care enough to spend two weeks on this now, how does this specific
solution look?

Anybody can suggest expensive and complicated solutions. It takes
work and design insight to get to a simple idea that fits in a small
time box. Stating the appetite and embracing it as a constraint
turns everyone into a partner in that process.

6 0

Ingredient 3. Solution
Like solutions with no problems, sometimes companies bet on
problems with no solution. “We really need to make it easier to find
things on the messages section. Customers are complaining
about it.”

That’s not ready to pitch or bet on. A problem without a solution is
unshaped work. Giving it to a team means pushing research and
exploration down to the wrong level, where the skillsets, time limit,
and risk profile (thin vs. heavy tailed) are all misaligned.

If the solution isn’t there, someone should go back and do the
shaping work on the shaping track. It’s only ready to bet on when
problem, appetite, and solution come together. Then you can scru-
tinize the fit between problem and solution and judge whether it’s a
good bet or not.

Help them see it
During the elements phase, it was critical to sketch ideas at the
right level of abstraction so we didn’t slow down or lose any of the
ideas appearing at the corners of our brains and tips of our tongues.

We also need to draw at the right level of detail when we write the
pitch. Here the challenge is a little different. We have time to slow
down and prepare a proper presentation. We need to stay high level,
but add a little more concreteness than when we worked alone or
with a partner. People who read the pitch and look at the drawings
without much context need to “get” the idea.

We need more concreteness, but we don’t want to over-specify the
design with wireframes or high-fidelity mocks. They’ll box in the
designers who do the work later. We also risk side-tracking the

6 1C H A P T E R 6 - W R I T E T H E P I T C H

discussion into topics like color, proportions, or layout that have
nothing to do with the actual shaping work we did.

At the same time, hand-written breadboards have a “you had to be
there” quality to them. To people who didn’t watch the breadboard
unfold step by step, it can look like a soup of words and arrows.

Therefore we need some techniques to help people see the idea
while still not going too far into irrelevant details.

Embedded sketches
Suppose your breadboard from the shaping session looked like this:

People might have trouble visualizing where these new affordances
go on the Dashboard. We could sketch a new box on the Dashboard
to make it clearer:

6 2

But we’re still asking people to imagine too much. It’s worth the
trade-off to go one step down into fat-marker detail here.

This makes it easier to see what the elements are and evaluate how
clearly the feature presents itself on the dashboard. The downside
is we’ve gotten into some layout decisions that would have been
nice to avoid. Designers should feel free to find a different design
than the box divided with a vertical line. We’d add a disclaimer
here in the pitch that reminds designers of the latitude they
should take.

This is an example of selectively getting into more visual detail
because we need it to sell the concept. Fortunately, we won’t need
to make as many visual decisions in other parts of the concept. This
was a “linchpin” part of the design that everybody had to see con-
cretely in order to “get” it.

Annotated fat marker sketches
Sometimes ideas are inherently visual or a little too complicated to
express in a schematic breadboard. Fat marker sketches can be very
effective in a pitch; you just need to take more care to label
them cleanly.

6 3C H A P T E R 6 - W R I T E T H E P I T C H

Redrawing the sketch on an iPad—still with a fat brush size—works
well. You can use different colors to separate the labels from the
material parts of the sketch.

Or you might add some call-outs to enable discussion of
specific elements.

6 4

Ingredient 4. Rabbit holes
Sometimes addressing a rabbit hole just requires a few lines of
text. For example, in the Payment Form project above, the shapers
wanted to call out a specific solution for how to create URLs. The
URLs would never live on custom domains for v1 of the project. This
is the kind of thing that’s not central to the concept, but spelling it
out patches a potential rabbit hole.

Ingredient 5. No Gos
Lastly if there’s anything we’re not doing in this concept, it’s
good to mention it here. In the case of the Payment Form project,
the team decided up front that they wouldn’t allow any kind of
WYSIWYG editing of the form. Users would only be able to provide
a logo and customize the header text on a separate “customize”
page. WYSIWYG might be better in some peoples’ eyes, but given
the appetite it was important to mark this as a no-go.

Examples
Here are two examples of real pitches.

6 5C H A P T E R 6 - W R I T E T H E P I T C H

This pitch for grouping to-dos together starts by showing a work-
around people are using in the current design. Then it sketches out
all the main ideas for how to enable optional to-do groupings.

Two screenshots demonstrate the problem. Fat marker sketches describe

the solution. Rabbit holes motivated some of the sketches.

See full size at basecamp.com/shapeup-todo-pitch.

6 6

This pitch for changing how notifications work starts with two
videos to demonstrate the problem. The black boxes toward the end
are a visualization of user behavior data that supports a decision in
the pitch.

Two videos show the problem. A fat marker sketch and a breadboard describe

the solution. The black boxes contain data visualizations that support trade-offs

in the solution. See full size at basecamp.com/shapeup-groups-pitch.

6 7C H A P T E R 6 - W R I T E T H E P I T C H

Ready to present
The next step will be to make the case that this pitch describes a bet
worth making. This can happen in a couple ways.

We prefer asynchronous communication by default and escalate to
real-time only when necessary. This gives everyone the maximum
amount of time under their own control for doing real work. That
means the first step for presenting a pitch is posting the write-up
with all the ingredients above somewhere that stakeholders can
read it on their own time. This keeps the betting table short and
productive. In ideal conditions everyone has time to read the
pitches in advance. And if that isn’t possible in some cases, the
pitch is ready to pull up for a quick live sell.

How we do it in Basecamp
We post pitches as Messages in Basecamp. We created a Message
Category called Pitch so we can easily find them. Pitches are posted
to a Team called Product Strategy that can be accessed by people on
the betting table.

Pitches on the Message Board of the Product Strategy team in Basecamp

6 8

When we need to include a fat marker sketch in a pitch, we’ll draw
it on an iPad (with Notability) and take a screenshot. Basecamp’s
text editor makes it easy to insert images and caption them so they
make sense in the flow of the pitch.

A pitch as a Message. Note the one-week appetite.

This was a Small Batch project.

A sketch drawn on an iPad in the middle of a pitch

6 9C H A P T E R 6 - W R I T E T H E P I T C H

People comment on the pitch asynchronously. Not to say yes or no
— that happens at the betting table — but to poke holes or contrib-
ute missing information.

In the next chapter we’ll look at the betting process in more detail
to see where pitches go and how we turn them into
scheduled projects.

Our CTO responds with technical thoughts on the pitch.

Betting
P A R T T W O

7 2

Now that we’ve written a pitch, where does it go? It doesn’t go onto
a backlog.

No backlogs
Backlogs are a big weight we don’t need to carry. Dozens and
eventually hundreds of tasks pile up that we all know we’ll never
have time for. The growing pile gives us a feeling like we’re always
behind even though we’re not. Just because somebody thought
some idea was important a quarter ago doesn’t mean we need to
keep looking at it again and again.

Backlogs are big time wasters too. The time spent constantly
reviewing, grooming and organizing old ideas prevents everyone
from moving forward on the timely projects that really matter
right now.

Bets, Not Backlogs

7 3C H A P T E R 7 - B E T S , N O T B A C K L O G S

A few potential bets
So what do we do instead? Before each six-week cycle, we hold
a betting table where stakeholders decide what to do in the next
cycle. At the betting table, they look at pitches from the last six
weeks — or any pitches that somebody purposefully revived and
lobbied for again.

Nothing else is on the table. There’s no giant list of ideas to review.
There’s no time spent grooming a backlog of old ideas. There are
just a few well-shaped, risk-reduced options to review. The pitches
are potential bets.

With just a few options and a six-week long cycle, these meetings
are infrequent, short, and intensely productive.

If we decide to bet on a pitch, it goes into the next cycle to build. If
we don’t, we let it go. There’s nothing we need to track or hold on to.

What if the pitch was great, but the time just wasn’t right? Anyone
who wants to advocate for it again simply tracks it independently—
their own way—and then lobbies for it six weeks later.

Decentralized lists
We don’t have to choose between a burdensome backlog and not re-
membering anything from the past. Everyone can still track pitches,
bugs, requests, or things they want to do independently without a
central backlog.

Support can keep a list of requests or issues that come up more
often than others. Product tracks ideas they hope to be able to
shape in a future cycle. Programmers maintain a list of bugs they’d
like to fix when they have some time. There’s no one backlog or

7 4

central list and none of these lists are direct inputs to the
betting process.

Regular but infrequent one-on-ones between departments help
to cross-pollinate ideas for what to do next. For example, Support
can tell Product about top issues they are seeing, which Product
can then track independently as potential projects to shape. Maybe
Product picks off just one of those top issues to work on now. Then,
in a future one-on-one, Support can lobby again for something that
hasn’t yet gotten attention.

This approach spreads out the responsibility for prioritizing and
tracking what to do and makes it manageable. People from different
departments can advocate for whatever they think is important and
use whatever method works for them to track those things—or not.

This way the conversation is always fresh. Anything brought back
is brought back with a context, by a person, with a purpose. Every-
thing is relevant, timely, and of the moment.

Important ideas come back
It’s easy to overvalue ideas. The truth is, ideas are cheap. They
come up all the time and accumulate into big piles.

Really important ideas will come back to you. When’s the last time
you forgot a really great, inspiring idea? And if it’s not that inter-
esting—maybe a bug that customers are running into from time to
time—it’ll come back to your attention when a customer complains
again or a new customer hits it. If you hear it once and never again,
maybe it wasn’t really a problem. And if you keep hearing about it,
you’ll be motivated to shape a solution and pitch betting time on it
in the next cycle.

7 5C H A P T E R 8 - T H E B E T T I N G T A B L E

Now that we have some good potential bets in the form of pitches,
it’s time to make decisions about which projects to schedule.

Six-week cycles
Committing time and people is difficult if we can’t easily determine
who’s available and for how long. When people are available at
different times due to overlapping projects, project planning turns
into a frustrating game of Calendar Tetris. Working in cycles dras-
tically simplifies this problem. A cycle gives us a standard project
size both for shaping and scheduling.

Some companies use two-week cycles (aka “sprints”). We learned
that two weeks is too short to get anything meaningful done. Worse
than that, two-week cycles are extremely costly due to the plan-
ning overhead. The amount of work you get out of two weeks isn’t
worth the collective hours around the table to “sprint plan” or the

The Betting Table

7 6

opportunity cost of breaking everyone’s momentum to re-group.

This led us to try longer cycles. We wanted a cycle that would be
long enough to finish a whole project, start to end. At the same time,
cycles need to be short enough to see the end from the beginning.
People need to feel the deadline looming in order to make trade-
offs. If the deadline is too distant and abstract at the start, teams
will naturally wander and use time inefficiently until the deadline
starts to get closer and feel real.

After years of experimentation we arrived at six weeks. Six weeks is
long enough to finish something meaningful and still short enough
to see the end from the beginning.

Cool-down
If we were to run six-week cycles back to back, there wouldn’t be
any time to breathe and think about what’s next. The end of a cycle
is the worst time to meet and plan because everybody is too busy
finishing projects and making last-minute decisions in order to ship
on time.

Therefore, after each six-week cycle, we schedule two weeks for
cool-down. This is a period with no scheduled work where we can
breathe, meet as needed, and consider what to do next.

During cool-down, programmers and designers on project teams
are free to work on whatever they want. After working hard to ship
their six-week projects, they enjoy having time that’s under their
control. They use it to fix bugs, explore new ideas, or try out new
technical possibilities.

7 7C H A P T E R 8 - T H E B E T T I N G T A B L E

Team and project sizes
In addition to standardizing the length of our cycles, we also
roughly standardize the types of projects and teams that we bet on.

Our project teams consist of either one designer and two program-
mers or one designer and one programmer. They’re joined by a QA
person who does integration testing later in the cycle.

These teams will either spend the entire cycle working on one
project, or they’ll work on multiple smaller projects during the
cycle. We call the team that spends the cycle doing one project the
big batch team and the team working on a set of smaller projects
the small batch team. Small batch projects usually run one or two
weeks each. Small batch projects aren’t scheduled individually. It’s
up to the small batch team to figure out how to juggle the work so
they all ship before the end of the cycle.

Now that we have a standard way to think about capacity, we can
talk about how we decide what to schedule.

The betting table
The betting table is a meeting held during cool-down where stake-
holders decide what to do in the next cycle. The potential bets to
consider are either new pitches shaped during the last six weeks, or
possibly one or two older pitches that someone specifically chose to
revive. As we said last chapter, there’s no “grooming” or backlog to
organize. Just a few good options to consider.

Our betting table at Basecamp consists of the CEO (who in our
case is the last word on product), CTO, a senior programmer, and a
product strategist (myself).

7 8

C-level time is only available in small slices, so there’s an atmo-
sphere of “waste no time” and the call rarely goes longer than an
hour or two. Everyone has had a chance to study the pitches on
their own time beforehand. Ad-hoc one-on-one conversations in
the weeks before usually establish some context too. Once the call
starts, it’s all about looking at the options that made it to the table
and making decisions.

The output of the call is a cycle plan. Between everyone present,
there’s knowledge of who’s available, what the business priorities
are, and what kind of work we’ve been doing lately. All of this feeds
into the decision-making process about what to do and who to
schedule (more on this below).

The highest people in the company are there. There’s no “step two”
to validate the plan or get approval. And nobody else can jump in
afterward to interfere or interrupt the scheduled work.

This buy-in from the very top is essential to making the cycles
turn properly. The meeting is short, the options well-shaped,
and the headcount low. When these criteria are met, the betting
table becomes a place to exercise control over the direction of the
product instead of a battle for resources or a plea for prioritization.
With cycles long enough to make meaningful progress and shaped
work that will realistically ship, the betting table gives the C-suite a

“hands on the wheel” feeling they haven’t had since the early days.

The meaning of a bet
We talk about “betting” instead of planning because it sets
different expectations.

First, bets have a payout. We’re not just filling a time box with tasks

7 9C H A P T E R 8 - T H E B E T T I N G T A B L E

until it’s full. We’re not throwing two weeks toward a feature and
hoping for incremental progress. We intentionally shape work into
a six-week box so there’s something meaningful finished at the end.
The pitch defines a specific payout that makes the bet
worth making.

Second, bets are commitments. If we bet six weeks, then we commit
to giving the team the entire six weeks to work exclusively on that
thing with no interruptions. We’re not trying to optimize every hour
of a programmer’s time. We’re looking at the bigger movement of
progress on the whole product after the six weeks.

Third, a smart bet has a cap on the downside. If we bet six weeks
on something, the most we can lose is six weeks. We don’t allow
ourselves to get into a situation where we’re spending multiples of
the original estimate for something that isn’t worth that price.

Let’s look at these last two points more closely.

Uninterrupted time
It’s not really a bet if we say we’re dedicating six weeks but then
allow a team to get pulled away to work on something else.

When you make a bet, you honor it. We do not allow the team to
be interrupted or pulled away to do other things. If people inter-
rupt the team with requests, that breaks our commitment. We’d no
longer be giving the team a whole six weeks to do work that was
shaped for six weeks of time.

When people ask for “just a few hours” or “just one day,” don’t
be fooled. Momentum and progress are second-order things, like
growth or acceleration. You can’t describe them with one point. You
need an uninterrupted curve of points. When you pull someone

8 0

away for one day to fix a bug or help a different team, you don’t
just lose a day. You lose the momentum they built up and the time
it will take to gain it back. Losing the wrong hour can kill a day.
Losing a day can kill a week.

What if something comes up during that six weeks? We still don’t
interrupt the team and break the commitment. The maximum
time we’d have to wait is six weeks before being able to act on the
new problem or idea. If the cycle passes and that thing is still the
most important thing to do, we can bet on it for that cycle. This is
why it’s so important to only bet one cycle ahead. This keeps our
options open to respond to these new issues. And of course, if it’s a
real crisis, we can always hit the brakes. But true crises are
very rare.

The circuit breaker
We combine this uninterrupted time with a tough but extremely
powerful policy. Teams have to ship the work within the amount of
time that we bet. If they don’t finish, by default the project doesn’t
get an extension. We intentionally create a risk that the project—as
pitched—won’t happen. This sounds severe but it’s extremely
helpful for everyone involved.

First, it eliminates the risk of runaway projects. We defined our
appetite at the start when the project was shaped and pitched. If
the project was only worth six weeks, it would be foolish to spend
two, three or ten times that. Very few projects are of the “at all
costs” type and absolutely must happen now. We think of this like a
circuit breaker that ensures one project doesn’t overload the system.
One project that’s taking too long will never freeze us or get in the
way of new projects that could be more important.

8 1C H A P T E R 8 - T H E B E T T I N G T A B L E

Second, if a project doesn’t finish in the six weeks, it means we did
something wrong in the shaping. Instead of investing more time
in a bad approach, the circuit breaker pushes us to reframe the
problem. We can use the shaping track on the next six weeks to
come up with a new or better solution that avoids whatever rabbit
hole we fell into on the first try. Then we’ll review the new pitch
at the betting table to see if it really changes our odds of success
before dedicating another six weeks to it.

Finally, the circuit breaker motivates teams to take more ownership
over their projects. As we’ll see in the next chapter, teams are given
full responsibility for executing projects. That includes making
trade-offs about implementation details and choosing where to cut
scope. You can’t ship without making hard decisions about where
to stop, what to compromise, and what to leave out. A hard dead-
line and the chance of not shipping motivates the team to regularly
question how their design and implementation decisions are affect-
ing the scope.

What about bugs?
If the teams aren’t interrupted in the six week cycle, how do we
handle bugs that come up?

First we should step back and question our assumptions about bugs.

There is nothing special about bugs that makes them automatically
more important than everything else. The mere fact that something
is a bug does not give us an excuse to interrupt ourselves or other
people. All software has bugs. The question is: how severe are
they? If we’re in a real crisis—data is being lost, the app is grind-
ing to a halt, or a huge swath of customers are seeing the wrong
thing—then we’ll drop everything to fix it. But crises are rare. The

8 2

vast majority of bugs can wait six weeks or longer, and many don’t
even need to be fixed. If we tried to eliminate every bug, we’d never
be done. You can’t ship anything new if you have to fix the whole
world first.

That said, nobody likes bugs. We still want ways to deal with them.
Three strategies have worked for us.

1. Use cool-down. Ask any programmer if there are things
they wish they could go back and fix and they’ll have a
list to show you. The cool-down period between cycles
gives them time to do exactly that. Six weeks is not long
to wait for the majority of bugs, and two weeks every six
weeks actually adds up to a lot of time for fixing them.

2. Bring it to the betting table. If a bug is too big to fix during
cool-down, it can compete for resources at the betting table.
Suppose a back-end process is slowing the app down and a
programmer wants to change it from a synchronous step to an
asynchronous job. The programmer can make the case for fixing
it and shape the solution in a pitch. Then instead of interrupting
other work, the people at the betting table can make a deliber-
ate decision. Time should always be used strategically. There’s
a huge difference between delaying other work to fix a bug
versus deciding up front that the bug is worth the time to fix.

3. Schedule a bug smash. Once a year—usually around the holi-
days—we’ll dedicate a whole cycle to fixing bugs. We call it a “bug
smash.” The holidays are a good time for this because it’s hard
to get a normal project done when people are traveling or taking
time off. The team can self-organize to pick off the most important
bugs and solve long-standing issues in the front-end or back-end.

8 3C H A P T E R 8 - T H E B E T T I N G T A B L E

Keep the slate clean
The key to managing capacity is giving ourselves a clean slate with
every cycle. That means only betting one cycle at a time and never
carrying scraps of old work over without first shaping and consider-
ing them as a new potential bet.

It is crucial to maximize our options in the future. We don’t know
what will happen in the next six weeks. We don’t know what bril-
liant idea will emerge or what urgent request might appear.

Even if we have some kind of road map in our heads at the time
scale above cycles, we keep it in our heads and in our side-channel
discussions. Each six weeks we learn what’s working and what
isn’t, what’s important and what’s not. There’s no downside to
keeping the option open and massive upside from being available
to act on the unexpected.

What about projects that just can’t be done in one cycle? In that
case we still only bet six weeks at a time. Suppose we envision a
feature that takes two cycles to ship. We reduce our risk dramat-
ically by shaping a specific six week target, with something fully
built and working at the end of that six weeks. If that goes as
expected, we’ll feel good about betting the next six weeks the way
we envisioned in our heads. But if it doesn’t, we could define a very
different project. Or we could put the multi-cycle thing on pause
and do something urgent that came up. The important thing is that
we always shape what the end looks like for that cycle and that we
keep our options open to change course.

8 4

Look where you are
Depending on whether we’re improving an existing product or
building a new product, we’re going to set different expectations
about what happens during the six-week cycle.

This invites us to reflect on where we are in the arc of our product’s
development and bet accordingly.

Existing products
When we add features to an existing product, we follow the stan-
dard Shape Up process: shape the work, bet on it, and give it to a
team to build. We expect the team to finish and ship some version
of the shaped work by the end of the cycle.

On an existing product, all of the existing code and design that isn’t
going to change defines a kind of empty space that the new feature
will fit into. Shaping and building is like crafting a piece of furni-
ture for a house that is already built.

New products
New products are different. Whereas adding to an existing product
is like buying a couch for a room with fixed dimensions, new
product development is like figuring out where the walls and the
foundation should go so the building will stand.

We’ve noticed three phases of work when we build a new product
from scratch. In each phase, the way that we shape and our expec-
tations for how the team will work together during the cycle are

Place Your Bets

8 5C H A P T E R 9 - P L A C E Y O U R B E T S

different. These phases unfold over the course of multiple cycles,
but we still only bet one cycle at a time.

R&D mode
At the very earliest stages of a new product, our idea is just a theory
or a glimmer. We don’t know if the bundle of features we imagine
will hold together in reality, and the technical decisions about how
to model them in code are even less clear.

This means there is a lot of scrapwork. We might decide half-way
to standing up a feature that it’s not what we want and try another
approach instead.

In other words, we can’t reliably shape what we want in advance
and say: “This is what we want. We expect to ship it after six
weeks.” We have to learn what we want by building it.

We call this stage R&D mode and adjust for it in three ways.

1. Instead of betting on a well-shaped pitch, we mainly bet the
time on spiking some key pieces of the new product idea. The
shaping is much fuzzier because we expect to learn by building.

2. Rather than delegating to a separate build team, our senior
people make up the team. David (CTO) takes the program-
ming role and works with Jason (CEO and designer) or a senior
designer with Jason’s guidance. This is necessary for two
reasons. First, you can’t delegate to other people when you
don’t know what you want yourself. Second, the architectural
decisions will determine what’s possible in the product’s
future — they define the “holes” that future features fit into. At
this phase the team needs to hold the vision of the product
and be able to judge the long-term effects of design decisions.

8 6

3. Lastly, we don’t expect to ship anything at the end of an R&D
cycle. The aim is to spike, not to ship. In the best case we’ll
have some UI and code committed to serve as the foundation
for subsequent work. The goal is to learn what works so we can
commit to some load-bearing structure: the main code and UI
decisions that will define the form of the product going forward.

We can’t ship anything to customers with just a single cycle of R&D
work. But we still don’t commit to more than one cycle at a time.
We may learn from the first cycle that we aren’t ready to tackle the
product yet. Or we may discover that our intuition rang true and
the product is coming together. Depending on how it goes, we’ll
decide cycle-by-cycle whether to continue spending informal time
in R&D mode.

Production mode
If we continue to get warmer after some R&D cycles, we’ll eventu-
ally reach a point where the most important architectural decisions
are settled. The product does those few essential things that define
it, and the foundation is laid for the dozens of other things we’ll
have to do before we can ship to customers.

With this structure in place, the senior team can bring in other
people to contribute. This is the flip to production mode, where we
work in formal cycles with clear-cut shaping, betting, and building
phases. Production mode is like working on an existing product: the
precedent set by the R&D work enables new contributors to identify
where new functionality belongs and how it fits into the whole.

In production mode:

1. Shaping is deliberate again. The shaped work describes

8 7C H A P T E R 9 - P L A C E Y O U R B E T S

what we expect to see at the end of the cycle.

2. The team that builds the projects is no longer limited to the
senior group. It becomes possible to bet multiple teams
in parallel (if you have them) and cover more ground.

3. Shipping is the goal, not spiking. But because the product
isn’t publicly available to customers yet, we define ‘ship-
ping’ differently. Shipping means merging into the
main codebase and expecting not to touch it again.

Since we aren’t shipping to customers at the end of each cycle, we
maintain the option to remove features from the final cut before
launch. This means we can still be experimental. We can bet six
weeks on a feature without knowing if we’ll want it in the final
product. That’s not a problem as long as we set expectations to the
build team: we can’t predict what we’ll want in the final cut, and
we’re willing to risk this cycle to take our best swing at the idea.

Cleanup mode
In the final phase before launching the new product, we throw all
structure out the window. We call this cleanup mode. It’s a free-for-
all. We’ve built enough new products to learn that there are always
things we forget, things we miss, details that aren’t right, and bugs
that creep in over the course of the R&D and production
mode cycles.

There’s something about putting your finger near the launch button
that makes your hair stand up. Everything suddenly gets “real.”
Things we dismissed before pop out at us with new importance.

That’s why we reserve some capacity at the end for the unexpected.
In cleanup mode:

8 8

1. There’s no shaping. The cycle is closer in spirit to the “bug
smash” mentioned in the previous chapter. Leadership
stands at the helm throughout the cycle, calling atten-
tion to what’s important and cutting away distractions.

2. There aren’t clear team boundaries. Every-
one jumps in to help however they can.

3. Work is “shipped” (merged to the main codebase)
continuously in as small bites as possible.

Discipline is still important. We have to check ourselves to make
sure these are must-haves we’re working on, not just our cold feet
begging us to delay launch. Cleanup shouldn’t last longer than
two cycles.

Cleanup is also the phase where leadership makes those “final cut”
decisions. A smaller surface area on a V1 means fewer questions
to answer, less to support, and less we’re committing to maintain
indefinitely. Sometimes we need to see all the features working as
a whole to judge what we can live without and what might require
deeper consideration before shipping it to customers.

Examples

The Dot Grid Calendar
We built the Dot Grid Calendar (see Chapter 2) for Basecamp, an
existing product. We shaped the project, bet six weeks on it, a team
built it, and then we shipped it straight to customers.

A new product: HEY
In 2020, after two years of development, we launched a new email
app and service called HEY. HEY was in R&D mode for the first year

8 9C H A P T E R 9 - P L A C E Y O U R B E T S

of its development. A team of three, Jason (CEO), David (CTO), and
Jonas (senior designer) explored a wide variety of ideas before set-
tling on the core. Nearly a year of production mode cycles followed,
where all of Basecamp’s teams fleshed out HEY’s feature set. We
ended with two cycles of cleanup and significantly cut back the
feature set to launch in July 2020.

To be precise, there was some overlap between R&D and production
mode after that first year. Basecamp was big enough as a company
that the senior team could shape and delegate production-mode
projects around parts of the app that were settled while continuing
to explore new territory in R&D mode themselves.

Every bet on HEY was placed one at a time. The betting table didn’t
know they would be working on HEY for two years during those
first few R&D cycles. Gradually they gained confidence in the idea
and grew a big-picture appetite for how many cycles they were
willing to spend on HEY. But they made no specific commitments
about what would go into those cycles. And flipping attention back
to Basecamp, our existing product, was always on the table.

An experimental feature: Hill Charts
A third example shows some grey area. When we built the Hill
Charts feature in Basecamp (see Chapter 13), we had no idea if it
was going to work out or not. Basecamp was an existing product,
and it felt too risky to bet on releasing this experimental feature
to customers. So we framed the project more like a production
mode bet on a new product. We shaped a first version that was
just functional enough to use ourselves. We didn’t expect to ship
it to customers without doing an additional cycle on it. This was a
risk: we bet one cycle, not two. If it didn’t work out, we’d scrap it. If
something more important came up, we might not ever schedule

9 0

the second cycle. But we ended up feeling confident after the first
cycle. We shaped a project to round it out, decided to bet another
cycle, and then shipped it to customers.

Questions to ask
Here are some common questions you might hear when people at
the betting table are debating which bets to place.

Does the problem matter?
Just like in pitch write-ups, we always take care to separate problem
and solution. The solution doesn’t matter if the problem isn’t
worth solving.

Of course, any problem that affects customers matters. But we have
to make choices because there will always be more problems than
time to solve them. So we weigh problems against each other. Is this
problem more important than that problem right now?

How the people at the table judge problems depends on their per-
spective, role, and knowledge. For example, a problem might impact
a small segment of customers but put a disproportionate burden on
support. Depending on your exposure to support and which aspect
of the business you’re focused on, you may weigh that differently.

Sometimes a solution that is too complicated or too sweeping may
invite questions about the problem. Do we really need to make so
many changes across the app? Have we understood the problem
specifically enough? Maybe there’s a way to narrow it down so that
we get 80% of the benefit from 20% of the change.

Is the appetite right?
It’s good when we have a solution shaped to a reasonable time
frame, like two or six weeks. But we might still debate whether it’s

9 1C H A P T E R 9 - P L A C E Y O U R B E T S

worth the time. Suppose a stakeholder says they aren’t interested
in spending six weeks on a given pitch. The negotiation could go a
couple directions from there:

1. Maybe the problem wasn’t articulated well enough, and there’s
knowledge that the shaper can add to the conversation right now
to swing opinion. For example, “Yeah it doesn’t happen often, but
when it does people are so vocal about it that it really tarnishes
perception of us.” Or “Maybe it sounds trivial, but support has
to go through 11 time-consuming steps to get to resolution.”

2. Sometimes saying “no” to the time commitment is really saying
no to something else. Maybe there’s something about the solu-
tion or the technical implementation they don’t like. Asking “How
would you feel if we could do it in two weeks?” can uncover that
it’s not so much about the time. The CTO might answer, “I don’t
want to introduce another dependency into that area of the app.”

3. The shaper might just let the idea go if interest is too low.

4. The shaper might go back to the drawing table and either
work on a smaller version (for a shorter appetite) or do
more research if they believe the problem is compel-
ling but they weren’t armed well enough to present it.

Is the solution attractive?
The problem may be important and the appetite fair, but there can
be differences about the solution.

For example, adding interface elements to the screen carries an
invisible cost: giving up the real estate. A button in the corner of the
home page might perfectly solve the problem. But that real estate is
valuable. If we give it up now, we won’t be able to use it in the future.

9 2

Are we selling it too cheaply to solve this particular problem?

If someone offers an immediate design solution, like “how about
we move that button to an action menu instead,” we might discuss
it. But generally we’ll avoid doing design work or discussing tech-
nical solutions for longer than a few moments at the betting table.
If we catch ourselves spending too much time in the weeds we’ll
remind ourselves “okay, we’re not doing design here” and move
back up to the high level.

Is this the right time?
The kind of project we want to do next can depend on which proj-
ects we’ve done recently. Maybe it’s been too long since we’ve made
a splash of news with a new feature. Or perhaps we’ve been build-
ing too many new features and feel overdue to fix some long-stand-
ing customer requests. Or if the teams spent the last couple cycles
in the same area of the app, their morale may dip if we plan yet
another project doing the same kind of work.

Those are all reasons that we might pass on a project even though
it’s perfectly well shaped and valuable. The project’s great; it’s just
not the right time.

Are the right people available?
As part of the betting process we choose who specifically will play
which role on each team. That is, we’ll pair a project with a specific
small team of a designer and one or two programmers. We have a

“Core Product” team of designers and programmers and we select
from that pool when planning teams for each cycle. The team will
work with each other for the whole cycle and then the next cycle
can be a different combination of people.

Different projects require different expertise. Maybe we need some

9 3C H A P T E R 9 - P L A C E Y O U R B E T S

more front-end programming on this one. Or this other one is going
to invite a lot of scope creep so we need someone who’s good with
the scope hammer.

The type of work each person has been doing is another factor.
Someone who’s done a long string of small batch projects might
prefer to take on a big batch, or vice versa.

And lastly there’s always a little Calendar Tetris with peoples’
availability. Vacations or sabbaticals affect which projects we can
schedule in the coming cycle.

We’ve seen some other companies use a different model where
instead of assigning the projects to people, they let the team
members choose which projects they want to work on. Culturally,
we are too meeting-averse for this extra step. But we’ve heard it can
work well for some teams because the project teams have a little
more buy-in.

Post the kick-off message
After the bets are made, someone from the betting table will write a
message that tells everyone which projects we’re betting on for the
next cycle and who will be working on them.

Jason announces the bets for the next cycle with a Basecamp message

Building
P A R T T H R E E

9 6

We’ve made our bets and now it’s time to start the next cycle. How
does the team get started?

Assign projects, not tasks
We don’t start by assigning tasks to anyone. Nobody plays the role
of the “taskmaster” or the “architect” who splits the project up into
pieces for other people to execute.

Splitting the project into tasks up front is like putting the pitch
through a paper shredder. Everybody just gets disconnected pieces.
We want the project to stay “whole” through the entire process so
we never lose sight of the bigger picture.

Instead, we trust the team to take on the entire project and work
within the boundaries of the pitch. The team is going to define their
own tasks and their own approach to the work. They will have full
autonomy and use their judgement to execute the pitch as best as

Hand Over Responsibility

9 7C H A P T E R 1 0 - H A N D O V E R R E S P O N S I B I L I T Y

they can.

Teams love being given more freedom to implement an idea the
way they think is best. Talented people don’t like being treated like

“code monkeys” or ticket takers.

Projects also turn out better when the team is given responsibility
to look after the whole. Nobody can predict at the beginning of a
project what exactly will need to be done for all the pieces to come
together properly. What works on paper almost never works exactly
as designed in practice. The designers and programmers doing the
real work are in the best position to make changes and adjustments
or spot missing pieces.

When teams are assigned individual tasks, each person can execute
their little piece without feeling responsible for judging how all the
pieces fit together. Planning up front makes you blind to the reality
along the way.

Remember: we aren’t giving the teams absolute freedom to invent
a solution from scratch. We’ve done the shaping. We’ve set the
boundaries. Now we are going to trust the team to fill in the outline
from the pitch with real design decisions and implementation.

This is where our efforts to define the project at the right level of
abstraction—without too much detail—will pay off. With their talent
and knowledge of the particulars, the team is going to arrive at a
better finished product than we could have by trying to determine
the final form in advance.

Done means deployed
At the end of the cycle, the team will deploy their work. In the case
of a Small Batch team with a few small projects for the cycle, they’ll

9 8

deploy each one as they see fit as long as it happens before the end
of the cycle.

This constraint keeps us true to our bets and respects the circuit
breaker. The project needs to be done within the time we budgeted;
otherwise, our appetite and budget don’t mean anything.

That also means any testing and QA needs to happen within the
cycle. The team will accommodate that by scoping off the most
essential aspects of the project, finishing them early, and coordinat-
ing with QA. (More on that later.)

For most projects we aren’t strict about the timing of help documen-
tation, marketing updates, or announcements to customers and
don’t expect those to happen within the cycle. Those are thin-tailed
from a risk perspective (they never take 5x as long as we think they
will) and are mostly handled by other teams. We’ll often take care
of those updates and publish an announcement about the new
feature during cool-down after the cycle.

Kick-off
We start the project by creating a new Basecamp project and adding
the team to it. Then the first thing we’ll do is post the shaped
concept to the Message Board. We’ll either post the original pitch or
a distilled version of it.

9 9C H A P T E R 1 0 - H A N D O V E R R E S P O N S I B I L I T Y

Since our teams are remote, we use the chat room in the Basecamp
project to arrange a kick-off call.

The first thing on the Basecamp project is a message with the shaped concept

Arranging a call with the team to walk through the shaped work

1 0 0

The call gives the team a chance to ask any important questions
that aren’t clear from the write-up. Then, with a rough understand-
ing of the project, they’re ready to get started.

Getting oriented
Work in the first few days doesn’t look like “work.” No one is
checking off tasks. Nothing is getting deployed. There aren’t any
deliverables to look at. Often there isn’t even much communication
between the team in the first few days. There can be an odd kind of
radio silence.

Why? Because each person has their head down trying to figure
out how the existing system works and which starting point is best.
Everyone is busy learning the lay of the land and getting oriented.

The team figuring out where to start

1 0 1C H A P T E R 1 0 - H A N D O V E R R E S P O N S I B I L I T Y

It’s important for managers to respect this phase. Teams can’t just
dive into a code base and start building new functionality imme-
diately. They have to acquaint themselves with the relevant code,
think through the pitch, and go down some short dead ends to
find a starting point. Interfering or asking them for status too early
hurts the project. It takes away time that the team needs to find the
best approach. The exploration needs to happen anyway. Asking
for visible progress will only push it underground. It’s better to
empower the team to explictly say “I’m still figuring out how to
start” so they don’t have to hide or disguise this legitimate work.

Generally speaking, if the silence doesn’t start to break after three
days, that’s a reasonable time to step in and see what’s going on.

Imagined vs discovered tasks
Since the team was given the project and not tasks, they need to
come up with the tasks themselves. Here we note an important
difference between tasks we think we need to do at the start of a
project and the tasks we discover we need to do in the course of
doing real work.

The team naturally starts off with some imagined tasks—the ones
they assume they’re going to have to do just by thinking about the
problem. Then, as they get their hands dirty, they discover all kinds
of other things that we didn’t know in advance. These unexpected
details make up the true bulk of the project and sometimes present
the hardest challenges.

Teams discover tasks by doing real work. For example, the designer
adds a new button on the desktop interface but then notices there’s
no obvious place for it on the mobile webview version. They record
a new task: figure out how to reveal the button on mobile. Or the

1 0 2

first pass of the design has good visual hierarchy, but then the
designer realizes there needs to be more explanatory copy in a
place that disrupts the layout. Two new tasks: Change the layout to
accommodate explanatory copy; write the explanatory copy.

Often a task will appear in the process of doing something unre-
lated. Suppose a programmer is working on a database migration.
While looking at the model to understand the associations, she
might run into a method that needs to be updated for a different
part of the project later. She’s going to want to note a task to update
that method later.

The way to really figure out what needs to be done is to start
doing real work. That doesn’t mean the teams start by building
just anything. They need to pick something meaningful to build
first. Something that is central to the project while still small
enough to be done end-to-end—with working UI and working
code—in a few days.

In the next chapters we’ll look at how the team chooses that target
and works together to get a fully integrated spike working.

1 0 3C H A P T E R 1 1 - G E T O N E P I E C E D O N E

As the team gets oriented, they start to discover and track the tasks
they need to do to build the project. It’s important at this early
phase that they don’t create a master plan of parts that should
come together in the 11th hour. If the team completes a lot of tasks
but there’s no “one thing” to click on and try out, it’s hard to feel
progress. A team can do a lot of work but feel insecure because they
don’t have anything real to show for it yet. Lots of things are done
but nothing is really done.

Instead they should aim to make something tangible and demoable
early—in the first week or so. That requires integrating vertically
on one small piece of the project instead of chipping away at the
horizontal layers.

Integrate one slice
We can think of projects in two layers: front-end and back-end,

Get One Piece Done

1 0 4

design and code. While technically speaking there are more layers
than this, these two are the primary integration challenge in
most projects.

Suppose the project starts with a lot of design. The team could
design a variety of screens and even implement them as templates
or views. But until they’re wired to a backend, nothing does any-
thing. The work remains hypothetical and speculative.

Same with the backend. A lot of tasks could be checked off, but
without any UI—what can you do with it? How do you judge if the
work on a specific piece of business logic is really right without
interacting with it?

What we want instead is to pick off one slice of the project to in-
tegrate. Then when that’s done, the team has something tangible
that they’ve proven to work (or not work and reconsider). Anyone
can click through the interaction and see if the feature does what it
should and if what it does is what they want.

1 0 5C H A P T E R 1 1 - G E T O N E P I E C E D O N E

Case study: Clients in projects
We built a feature in Basecamp 3 that allowed service firms to invite
clients to their projects and share chosen documents, messages,
or to-do lists with them. The concept, defined in the pitch, had a
variety of moving parts:

• Client Access: Before this feature, Basecamp’s access
model was all or nothing. We needed a way to invite
some people to see just some parts of a project. This
had major back-end and caching implications.

• Client Management: We needed a way to add clients to projects
and the ability to manage clients separately from team members.

• Visibility Toggle: Each piece of content in a project
should have a toggle to expose it to clients or not.

The team had one designer and one programmer. After they got
oriented and familiar with how the existing code worked, the de-
signer chose the visibility toggle as the best place to integrate first.
This was the most central piece of UI in the project. It’s the one that
would appear in demo videos and the interaction customers would
use most.

The designer didn’t make a pixel-perfect mockup. Instead, he
experimented with different affordances and placements in the
app’s HTML templates. Should the toggle be two radio buttons, a

1 0 6

checkbox, or a custom button that changes state?

Meanwhile, the programmer wasn’t waiting around. He had enough
guidance from the pitch to start spiking the access model.

As soon as the designer felt confident in the basic direction of the
UI, he pinged the programmer and showed him the stubbed toggle.
Stepping away from the access problem for a bit, the programmer
wired the toggle enough so that it would appear on all the sup-
ported content types, change state when clicked, and save its state
in the database.

At this point, the toggle didn’t actually change the visibility of the
content. But it worked from the service firm’s point of view. The
designer could click it, feel it, and judge how well it worked with
live data on a staging server.

There was still more design work to do on the toggle. But the pro-
grammer didn’t need to be involved anymore. With the affordance
wired up, the designer could continue to experiment with copy,
placement, color, mobile view rendering, and more. Meanwhile,
the programmer could get back to the access model or whatever
else was most important to tackle next.

About three days after the start of the project, the designer demoed
the working toggle to a manager. Their conversation led to a few
more tweaks and then they were able to call the toggle “done.” One
important piece of the project was designed, implemented, demoed,
and settled. The team felt good about showing tangible progress.
And the team and management both felt confidence in the project
by seeing a working piece. By clicking through a core interaction
early, they were able to validate that what they hoped would make
sense in theory did indeed look right and make sense in practice.

1 0 7C H A P T E R 1 1 - G E T O N E P I E C E D O N E

This short example illustrates a few points about how the teams
integrate over short periods to finish one piece of the project at
a time.

Programmers don’t need to wait
Because the important moving parts were already defined in the
shaping process, programmers don’t need to sit idle waiting for
design when the project starts. There’s enough direction in the
pitch for them to start working on back-end problems from the start.
They won’t be able to take a piece of functionality to completion
without knowing where it leads on the front-end, but there should
be enough information in the pitch to inform foundational
modeling decisions.

Affordances before pixel-perfect screens
Programmers don’t need a pixel-perfect design to start implement-
ing. All they need are endpoints: input elements, buttons, places
where stored data should appear. These affordances are the core of
a user interface design.

Questions about font, color, spacing, and layout can be resolved
after the raw affordances are in place and hooked up in code. Copy-
writing, basic affordances, and some wiring are all we need to try a
live working version in the browser or on the device. Then we can
answer the fundamental questions early: Does it make sense? Is it
understandable? Does it do what we want?

That means the first interface a designer gives to a programmer can
look very basic, like the example below. It’s more like a breadboard
than a visual design or a polished mock-up.

1 0 8

This screenshot is from a registration app for multi-day courses.
The designer made it in HTML by hand. There’s barely any style

— just enough visual hierarchy to feel confident that the layout is
usable and amenable to future layers of styling.

While the design looks simple, a lot of decisions are reflected in it.

• The decision to ask for arrival time but not depar-
ture time came from detailed discussions about
the business logic and pricing model.

• The specific options in the arrival time pulldown correspond
to rules that had to be worked out about when to charge for
meals and overnight stays.The designer’s first sketches used a
calendar-style date picker for the arrival and departure days.
But that led to UX problems. Some courses were long (multiple
weeks) with different phases. There wasn’t room in a standard
calendar-style date picker to label the phases on the day boxes.
With a pulldown, she could use option groups to label groups of
dates when needed. That way users wouldn’t need to reference a
schedule elsewhere to be sure they were selecting the right dates.

1 0 9C H A P T E R 1 1 - G E T O N E P I E C E D O N E

Here’s another example. This is the first working piece of an app for
capturing data from customer interviews.

At this early stage the project name (Basecamp) and interview
subject (Jan) were hard-coded and most of the links didn’t
go anywhere.

Look at how raw this design is. The actions are plain text links in
the default blue and purple browser colors. The boxes containing
the data points are barely styled with plain black borders. As rough
as it is, this design tests some important trade-offs. The designer
chose to show as much data as possible above the fold so it would
be easy to review interviews. That didn’t leave enough room within
each section for UI to add, edit, or remove data points. That led the
designer to create separate screens for adding and editing data
per section.

1 1 0

This is the first design for adding and editing “pulls” — a type
of data in this interview technique. Again, look at how raw it is.
There’s just enough design here to quickly wire it up and test it. The
team can click through this to judge whether navigating to a sepa-
rate screen to record data is acceptable or not. If it works, they can
layer on additional styling later. If it doesn’t work, they didn’t waste
a lot of time implementing a pixel-perfect design.

Beautiful alignment, colors, and typography don’t matter on the
first pass. Visual styling is important in the end product, not in the
early stages. The biggest uncertainties are about whether it will
work, whether it will make sense, and how hard it will be to im-
plement. After the elements are wired up, they can be rearranged,
restyled, and repainted to improve the work that’s already done.
First make it work, then make it beautiful.

Program just enough for the next step
The same is true for back-end work. It doesn’t have to be all or
nothing. Sometimes a designer just needs some scaffolding—a
couple fields that save data or some code to navigate from one
stubbed screen to another. Other times she needs to populate a
variable in the template with a collection of real data so she can
iterate on different displays (rows, columns, media boxes, etc) to
find the best design.

The early back-end work can be strategically patchy. There might
be a controller to render templates but no model. Or a controller
and bits of a model with mock data but no support for creating or
updating the data. Screens that aren’t wired yet could at least be
connected with routes for navigating between them.

When it was time to test the first piece of the interview app, the

1 1 1C H A P T E R 1 1 - G E T O N E P I E C E D O N E

team knew there would be sensitive data from real interviews going
into it. They needed to protect it with some kind of authentication.
Rather than building full username and password support—or even
integrating a third-party solution—they just used plain HTTPAuth
to hard-code a password.

This allowed the team to try adding data from real interviews very
early in the cycle, without slowing down to hook up some authen-
tication code that wasn’t going to teach them anything about the
problems they were trying to solve.

The point is to create a back-and-forth between design and pro-
gramming on the same piece of the product. Instead of one big
hand-off, take turns layering in affordances, code, and visual
styling. Step by step, click through the real working feature-in-prog-
ress to judge how it’s coming and what to do next.

Start in the middle
In the examples above, the team didn’t build log in first. They didn’t
build a way to create an interview project and an interview subject
before solving the problem of adding interview data. They jumped
straight into the middle where the interesting problem was and
stubbed everything else to get there.

1 1 2

To expand on this, here are three criteria to think about when
choosing what to build first:

First, it should be core. The visibility toggle was core to the Clients
in Projects concept. Without it, the other work wouldn’t mean
anything. Contrast that with a more peripheral aspect of the project,
like the ability to rename a client. Both were “required,” but one
was more central and important to prove out early in the cycle. In
the interview app, recording interview data was more core—more in
the middle—than setting up a new research project.

Second, it should be small. If the first piece of work isn’t small
enough, there isn’t much benefit to carving it off from the rest. The
point is to finish something meaningful in a few days and build mo-
mentum—to have something real to click on that shows the team is
on the right track.

Third, it should be novel. If two parts of the project are both core
and small, prefer the thing that you’ve never done before. In the
Clients in Projects feature, the UI for adding clients was mostly the
same as the UI for adding regular users. Starting on that would
have moved the project forward, but it wouldn’t have taught the
team anything. It wouldn’t have eliminated uncertainty. Starting
with the visibility toggle boosted everyone’s confidence because it
proved that a new idea was going to work.

1 1 3C H A P T E R 1 2 - M A P T H E S C O P E S

In the previous chapter, we started the project by finishing one
integrated slice early on. That practice belongs to a more general
technique that the team can use throughout the project.

Organize by structure, not by person
When asked to organize tasks for a project, people often separate
work by person or role: they’ll create a list for Designers and a list
for Programmers. This leads to the problem we talked about in the
previous chapter—people will complete tasks, but the tasks won’t
add up to a finished part of the project early enough.

To take an example outside of software, consider someone orga-
nizing a fundraising event. They could create a list of tasks for
each of their three volunteers and track the work that way. But
then there’d be no way to see the big picture of how the event is
coming together—what’s done and what’s not done at the macro

Map The Scopes

1 1 4

level. Instead, they should create lists based on the structure of
the project—the things that can be worked on and finished inde-
pendently of each other. To do that, they would create lists for Food
Menu, Venue Setup, and Light/Sound. Then the organizer can
easily see which areas are done and which areas have
outstanding work.

In product development, the categories aren’t pre-cut for us. We
usually build things we’ve never built before. Each project is a wild
territory that we have to walk through before we can draw a map.
By digging into the work, we figure out where the interdependen-
cies are, how things are connected, and what we can slice apart.

As we saw in the previous chapter, the slices of work integrate front-
end and back-end tasks. This allows us to finish one slice of the
actual project and definitively move on. That’s better than having
lots of pieces that—fingers crossed—are supposed to come together
by the end of the cycle.

We call these integrated slices of the project scopes. We break the
overall scope (singular) of the project into separate scopes (plural)
that can be finished independently of each other. In this chapter,
we’ll see how the team maps the project into scopes and tackles
them one by one.

The scope map
Imagine an overhead view of
the project. At the beginning,
there’s just an outline from
the shaping work that pre-
ceded the project. There aren’t
any tasks or scopes yet.

1 1 5C H A P T E R 1 2 - M A P T H E S C O P E S

When the team members take over the project, they start discover-
ing tasks. Tasks are a natural starting point because they’re con-
crete and granular. It’s too early to organize them into higher level
categories. It would be artificial to try and group them arbitrarily.
It’s enough at the start just to capture a variety of things that need
to happen.

But we don’t want to stay with this picture for long. It’s too low-
level. There’s nothing visible from high altitude.

As the team starts doing real work on the project they learn how the
tasks are related and what the structure of the project is really like.
Then they become able to factor the project into scopes. This is like
dividing the map of the project into separate territories.

1 1 6

The scopes reflect the meaningful parts of the problem that can be
completed independently and in a short period of time—a few days
or less. They are bigger than tasks but much smaller than the
overall project.

The map is a mental image. In practice, we define and track the
scopes as to-do lists. Each scope corresponds to a list name. Then
any tasks for that scope go in that list.

1 1 7C H A P T E R 1 2 - M A P T H E S C O P E S

The language of the project
Scopes are more than just slices. They become the language of the
project at the macro level. When we were building the Clients in
Projects feature, the team used the language of the scopes like this:

“After Bucket Access is done we can implement Invite Clients. Then
we’ll Update Recording Visibility when people on the firm flip the
Visibility Toggle.”

When it’s time to report status, the team uses the language of
scopes to explain what’s done and what’s not done. It’s more
satisfying to have the conversation at a high level and point to fin-
ished pieces of software, instead of going down into the weeds and
defending the purposes and status of individual outstanding tasks.
(We’ll see more in the next chapter about how to report on scopes
using the Hill Chart.)

Case study: Message drafts
A designer and programmer were building a feature to create and
save drafts of messages in a new app. After kick-off, they identified
a bunch of tasks they would need to do at some point.

1 1 8

As the end of the first week approached, they had completed some
of the tasks, but there wasn’t anything to show for their work. In
the spirit of “get one piece done” they focused on one key interac-
tion they could integrate: creating a new draft.

They called the new scope “Start New,” created a to-do list for it,
and moved to-dos into it. There was only one design task left for
them to consider this scope finished.

After finishing the one design task, the scope was complete.

1 1 9C H A P T E R 1 2 - M A P T H E S C O P E S

The unscoped tasks that are left don’t represent all the work
that remains. More tasks are going to be discovered as they start
working on each of those. Still, there is enough variety in the work
to tease out more scopes. The team was motivated to break out the
scopes already at this point because they knew they wanted their
efforts to add up to another visible piece being finished before long.

Taking a look at the tasks that were left, they decided to pull out
tasks related to finding the drafts into a new scope called Locate
and the task for deleting into a scope called Trash. The work that
was left all seemed related to saving and editing the draft, so they
called that Save/Edit.

Take a look at the Locate scope. There’s only one task there right
now. But surely there will be more work to do than just designing
the index. When there are implementation tasks to do, that’s where
they’ll go.

The designer started some work on Locate while the programmer
focused on Save/Edit. As she dug into it, she noticed she could
carve off a couple pieces to make more visible progress. There were
really three scopes in it.

1 2 0

First she factored out the work related to sending the drafted
message. She called that Send.

Finally, some of the remaining Save/Edit tasks were about storing
information and one other was actually unrelated—it was a special
case for handling drafts when replying to another message. She
broke these out into two new scopes: Store and Reply.

1 2 1C H A P T E R 1 2 - M A P T H E S C O P E S

At this point the team suddenly felt like they could see the whole
of the project at a high level. All the major parts were visible at the
macro level as scopes. None of them were so big that important or
challenging tasks could hide inside of them unnoticed.

Meanwhile, the designer had made progress on Locate. After a little
wiring, they were able to mark that done. Tasks were getting done
on Send and Store as well.

Once Send and Store were finished, just a couple tasks remained for
Trash and Reply.

1 2 2

And then the project was done.

Discovering scopes
Scope mapping isn’t planning. You need to walk the territory before
you can draw the map. Scopes properly drawn are not arbitrary
groupings or categories for the sake of tidiness. They reflect the real
ground truth of what can be done independently—the underlying
interdependencies and relationships in the problem.

Scopes arise from interdependencies. The way parts depend on
each other determines when you can say a given piece of the work
is “done.” You don’t know what the work and interdependencies
actually are in advance. We talked earlier about imagined versus
discovered tasks. The same principle applies to scopes. The scopes
need to be discovered by doing the real work and seeing how things
connect and don’t connect.

That’s why at the start of a project, we don’t expect to see accurate
scopes. We’re more likely to see them at the end of week one or start
of week two, after the team has had a chance to do some real work
and find the natural dividing lines in the anatomy of the problem.

It’s also normal to see some shuffling and instability in the scopes
at first. The lines get redrawn or scopes renamed as the team feels
out where the boundaries really are, like in the example above. The

1 2 3C H A P T E R 1 2 - M A P T H E S C O P E S

team was focused on specific problems of saving and editing drafts,
so it was easiest to identify that scope early. It wasn’t until they got
into the weeds that they noticed there were tasks specifically about
sending the draft and made that a separate scope.

How to know if the scopes are right
Well-made scopes show the anatomy of the project. When you
feel a pain in your body, you don’t have to question whether it’s in
your arms or your legs or your head. You know the parts and their
names so you can explain where the pain is. In the same way, every
project has a natural anatomy that arises from the design you want,
the system you’re working within, and the interdependencies of the
problems you have to solve.

Three signs indicate when the scopes are right:

1. You feel like you can see the whole project and nothing im-
portant that worries you is hidden down in the details.

2. Conversations about the project become more flowing
because the scopes give you the right language.

3. When new tasks come up, you know where to put them. The
scopes act like buckets that you can easily lob new tasks into.

On the other hand, these three signs indicate the scopes should
be redrawn:

1. It’s hard to say how “done” a scope is. This often happens
when the tasks inside the scope are unrelated. If the problems
inside the scope are unrelated, finishing one doesn’t get you
closer to finishing the other. It’s good in this case to look for
something you can factor out, like in the Drafts example.

1 2 4

2. The name isn’t unique to the project, like “front-end” or
“bugs.” We call these “grab bags” and “junk drawers.” This
suggests you aren’t integrating enough, so you’ll never get to
mark a scope “done” independent of the rest. For example,
with bugs, it’s better to file them under a specific scope so
you can know whether, for example, “Send” is done or if you
need to fix a couple bugs first before putting it out of mind.

3. It’s too big to finish soon. If a scope gets too big, with too
many tasks, it becomes like its own project with all the faults
of a long master to-do list. Better to break it up into pieces
that can be solved in less time, so there are victories along
the way and boundaries between the problems to solve.

Let’s close this chapter with a few tips for dealing with different
kinds of tasks and scopes that will come up.

Layer cakes
Most software projects require some UI design and a thin layer of
code below. Think of a database app where all you need to do is
enter information, save it, and display it back. Work like this looks
like a layer cake: You can judge the work by UI surface area because
the back-end work is thin and evenly distributed. In these cases,
you can integrate all design and programmer tasks together in the
same scope. This is a good default for most “information system”
type apps.

1 2 5C H A P T E R 1 2 - M A P T H E S C O P E S

Icebergs
But sometimes there is significantly more back-end work than UI
work or vice versa. For example, a new feature that only requires
submitting a form could require very complex business logic to
return the right answer. This kind of work is like an iceberg.

For icebergs, it can help to factor out the UI as a separate scope of
work (assuming the UI isn’t interdependent with the back-end com-
plexity). If the back-end is complex enough, you can split it into
separate concerns and then turn those into scopes as well. The goal
in cases like this is to define some different things you can finish
and integrate in stages, rather than waiting until the 11th hour with
fingers crossed that it will all come together.

You also sometimes see upside-down icebergs, where there is a ton
of UI complexity with less back-end complexity. For example, the
data model for a calendar isn’t complicated, but the interaction
for rendering a multiple-day event and wrapping across grid cells
could take a lot of time and problem-solving.

1 2 6

For both back-end and front-end icebergs, we always question them
before accepting them as a fact. Is the complexity really necessary
and irreducible? Do we need that fancy UI? Is there a different way
to build that back-end process so it has fewer interdependencies
with the rest of the system?

Chowder
There are almost always a couple things that don’t fit into a scope.
We allow ourselves a “Chowder” list for loose tasks that don’t fit
anywhere. But we always keep a skeptical eye on it. If it gets longer
than three to five items, something is fishy and there’s probably a
scope to be drawn somewhere.

Mark nice-to-haves with ~
New tasks constantly come up as you get deeper into a problem.
You’ll find code that could be cleaned up, edge cases to address,
and improvements to existing functionality. A good way to deal
with all those improvements is to record them as tasks on the scope
but mark them with a ~ in front. This allows everyone on the team
to constantly sort out the must-haves from the nice-to-haves.

In a world with no deadlines, we could improve everything forever.
But in a fixed time box, we need a machete in our hands to cut
down the constantly growing scope. The ~ at the start of an item, or
even a whole scope, is our best tool for that. We’ll come back to this
technique when we talk about making cuts to scope in Chapter 14,
Decide When to Stop.

1 2 7C H A P T E R 1 3 - S H O W P R O G R E S S

Good-hearted managers don’t like asking for status. It’s awkward,
feels like nagging, and gets even worse when they have to ask fol-
low-up questions to get sufficiently clear about what’s going on.

Managers would rather be able to see the status themselves when-
ever they need to. We saw in the last chapter how organizing to-dos
into scopes helps the team to stay on top of the work. But this
doesn’t help the manager directly. There are a couple problems
with to-dos that make them insufficient for judging status.

The tasks that aren’t there
Consider a list with a few completed items and no incomplete items
left. This could mean that all the work is done. But it could also
mean that the team knows there’s more work but hasn’t defined
tasks yet.

Sometimes a team will define a scope early in the project without
populating it with tasks. It marks that some work needs to be done
but that actual tasks haven’t been discovered yet.

Show Progress

1 2 8

Or think about doing some QA at the end of a scope. All the tasks
are done. There’s nothing else to do. Then the act of testing popu-
lates the scope with new tasks for the issues found.

This goes back to the notion of imagined versus discovered tasks. In
our naive notion of a list that’s planned up-front, somebody popu-
lates it with items that are gradually checked off. In real life, issues
are discovered by getting involved in the problem. That means
to-do lists actually grow as the team makes progress.

If we tried to judge at t2 how far along the project is, we’d be misled.
From an outsider’s perspective, there’s no way to know whether
the number of outstanding tasks will go down or up. To know
that, you’d need more context on the work inside the scope to
understand what it means that those particular tasks are done and
whether others might still be coming.

1 2 9C H A P T E R 1 3 - S H O W P R O G R E S S

Estimates don’t show uncertainty
Some teams try to attach estimates to their tasks or scopes to report
status. The problem with estimates is they have a very different
meaning depending on the nature of the work being estimated.

Say you have two tasks, both estimated to take four hours. If one
task is something the team has done ten times in the past, you can
be confident in the estimate. Suppose the other task is something
the team has never done before, or it has unclear interdependen-
cies. It could take the four hours if all goes perfectly, but due to the
unknowns in it, it could stretch out to two to three days. It’s not
meaningful to write “4 hours, or maybe 3 days” as the estimate.

Recognizing this, we came up with a way to see the status of the
project without counting tasks and without numerical estimates.
We do that by shifting the focus from what’s done or not done to
what’s unknown and what’s solved. To enable this shift, we use the
metaphor of the hill.

Work is like a hill
Every piece of work has two phases. First there’s the uphill phase of
figuring out what our approach is and what we’re going to do. Then,
once we can see all the work involved, there’s the downhill phase
of execution.

1 3 0

Let’s use an everyday example to get the feeling of the hill.

Suppose you’re planning to host a dinner party. You’ve set the date,
but it’s still a couple weeks ahead and you haven’t thought about
what to cook yet. You have no idea what type of cuisine the meal
will be or what dish to make. That would place you at the start of
the hill on the bottom-left.

Next you think about who’s attending and note that a couple
people are vegetarian. That eliminates some options (like grilling
out) but still leaves a lot of options open. You consider both Italian
and Indian. You think Indian might be more fun to cook, with more
interesting vegetarian options. So you decide to look for
Indian recipes.

At this point, the question “What percent complete is the project?”
doesn’t even make sense. And if someone asked you to estimate
how long the shopping and prep will take, you couldn’t answer that
either because you haven’t chosen a dish yet. The answer would
be: “I’ve done some work to figure out what kind of cuisine, but I
haven’t narrowed it down to a specific dish yet.” We can represent
that by putting you halfway up the “figuring it out” side of the hill.

1 3 1C H A P T E R 1 3 - S H O W P R O G R E S S

Next you do some searching online and look through your recipe
books. You want to find a recipe that will be interesting but doesn’t
require ingredients that will be too hard to find. You settle on a
recipe and prepare a shopping list.

Now you are in a very different position than before. The feeling
changes from “I’m still not sure what I’m doing” to “Now I know
what to do.” You’re at the top of the hill.

1 3 2

From this vantage point, you can see all of the steps that are left.
It’s even fair to estimate how long all the work will take (“Let’s
see…an hour to grocery shop, 30 minutes of prep, cook for 45
minutes…”).

The day before the dinner party, you go to the grocery store and buy
the ingredients. This moves you downhill. You’re closer to finishing
the task.

Next comes the work of prepping and cooking the meal.

1 3 3C H A P T E R 1 3 - S H O W P R O G R E S S

After the meal is over, there’s just a little work left: the clean-up.

Note how the hill shows how the work feels at different stages. The
uphill phase is full of uncertainty, unknowns, and problem solving.
The downhill phase is marked by certainty, confidence, seeing
everything, and knowing what to do.

Scopes on the hill
We can combine the hill with the concept of scopes from the last
chapter. The scopes give us the language for the project (“Locate,”

“Reply”) and the hill describes the status of each scope
(“uphill,” “downhill”).

To see the status of the scopes, we can plot each one as a different
color on the hill.

This is a snapshot from a project to implement recurring events in
Basecamp. Here “Future-applying edits” is a scope that is still being
worked out, with significant unknowns to solve. The other two
scopes have no meaningful unknowns left, and “Global recurring
events” is closer to finished.

1 3 4

Status without asking
We built a feature exclusive to Basecamp for creating hill charts and
updating them with a few clicks. The team members, who have the
full context of where the work stands, intuitively drag the scopes
into position, and save a new update that’s logged on the project
(see How to Implement Shape Up in Basecamp).

1 3 5C H A P T E R 1 3 - S H O W P R O G R E S S

For managers, the ability to compare past states is the killer feature.
It shows not only where the work stands but how the work
is moving.

With this second-order view, managers can judge what’s in motion
and what’s stuck. They can see which problems the team chose to
solve and how much time they spent at each stage from unknown
to known to done.

1 3 6

This report becomes the manager’s first destination when they feel
anxious about a project. Since it’s self-serve, there’s no need to
interrupt the team with the awkward status question. And in cases
where something doesn’t look right, the manager can jump directly
into a conversation about the relevant piece of work. “Looks like

‘Autosave’ has been uphill for a while. What’s the unknown that’s
holding it back?” The manager can workshop this specific piece
of the project without having to first untangle it from all the other
things that are moving along as expected.

Nobody says “I don’t know”
Nobody wants to raise their hand to management and say “I don’t
know how to solve this problem.” This causes teams to hide uncer-
tainty and accumulate risk. The moments when somebody is stuck
or going in circles are where the biggest risks and opportunities lie.
If we catch those moments early, we can address them with help
from someone senior or by reworking the concept. If we don’t catch
them, the unsolved problems could linger so far into the cycle that
they endanger the project.

The hill chart allows everybody to see that somebody might be
stuck without them actually saying it. A dot that doesn’t move is
effectively a raised hand: “Something might be wrong here.”

1 3 7C H A P T E R 1 3 - S H O W P R O G R E S S

Once it’s been spotted, the language of uphill/downhill facilitates
the conversation. It’s less about the person (Looks like you’re
stuck!) and more about the work. The question is: What can we
solve to get that over the hill?

Prompts to refactor the scopes
Sometimes probing into a stuck scope reveals that it isn’t stuck at
all. The problem is in how the lines of the scope were drawn.

Here’s a case where the “Notify” scope was stuck on the hill for
too long.

When we checked in with the team, it turned out the work was
moving along just fine. The problem was that “Notify” wasn’t a
single thing. It had three different parts: designing an email, de-
livering the email in the back-end, and displaying the notification
in an in-app menu. The team mostly finished the code for deliver-
ing the email. The design of the email was nearly figured out. But
they hadn’t started on the in-app display. It wasn’t possible to say
whether “Notify” as a whole was over the hill or not because parts
of it were and parts of it weren’t.

1 3 8

The solution in a case like this is to break the scope apart into
smaller scopes that can move independently.

Now the team can move each dot to accurately show where the
work stands.

1 3 9C H A P T E R 1 3 - S H O W P R O G R E S S

The benefit comes at the second order. With the scopes separated
out, they can move independently over time. Now the team can
show more progress more frequently than before.

Build your way uphill
Some teams struggle with backsliding when they first try the hill
chart. They consider a scope solved, move it the top of the hill,
and later have to slide it back when they uncover an unexpected
unknown.

When this happens, it’s often because somebody did the uphill
work with their head instead of their hands. Coming up with an
approach in your head is just the first step uphill. We often have a
theory of how we’ll solve something—“I’ll just use that API”—and
then the reality turns out to be more complicated. It’s good to think
of the first third uphill as “I’ve thought about this,” the second
third as “I’ve validated my approach,” and the final third to the top
as “I’m far enough with what I’ve built that I don’t believe there are
other unknowns.”

Solve in the right sequence
In addition to seeing where the work stands, we can use the hill
chart to sequence the work—which problems to solve in
which order.

1 4 0

Some scopes are riskier than others. Imagine two scopes: One in-
volves geocoding data—something the team has never done before.
The other is designing and implementing an email notification.
Both have unknowns. Both start at the bottom of the hill. This is
where the team asks themselves: If we were out of time at the end
of the cycle, which of these could we easily whip together—despite
the unknowns—and which might prove to be harder than we think?

That motivates the team to push the scariest work uphill first. Once
they get uphill, they’ll leave it there and look for anything critically
important before finishing the downhill work to completion. It’s
better to get a few critical scopes over the top early in the project
and leave the screw-tightening for later.

Work expands to fill the time available. If the team starts with the
email template first, they could easily spend weeks iterating on
copy or creating the ultimate best-ever email design. But they don’t
need to do that. There’s some version of an email template that
could be worked out in a day during the final week and it would be
sufficient. The geocoder, on the other hand, might present novel
problems that the team could struggle with for weeks. They don’t
want that surprise to come at the end of the cycle.

Journalists have a concept called the “inverted pyramid.” The idea
is their articles start with the most essential information at the top,
then they add details and background information in decreasing
order of importance. This allows print newspaper designers to get
the crucial part of the story on the front page and cut the end as
needed without losing anything essential.

Effective teams sequence their problem solving in the same way.
They choose the most important problems first with the most

1 4 1C H A P T E R 1 3 - S H O W P R O G R E S S

unknowns, get them to the top of the hill, and leave the things that
are the most routine or least worrisome for last.

As the end of the cycle approaches, teams should have finished the
important things and left a variety of “nice to haves” and “maybes”
lingering around. That brings us to the next chapter, on deciding
when to stop.

1 4 2

When the end of the cycle approaches, the techniques we covered
so far will put the team in a good position to finish and ship. The
shaped work gave them guard rails to prevent them from wander-
ing. They integrated one scope at a time so there isn’t half-finished
work lying around. And all the most important problems have been
solved because they prioritized those unknowns first when they
sequenced the work.

Still, there’s always more work than time. Shipping on time means
shipping something imperfect. There’s always some queasiness in
the stomach as you look at your work and ask yourself: Is it good
enough? Is this ready to release?

Decide When to Stop

1 4 3C H A P T E R 1 4 - D E C I D E W H E N T O S T O P

Compare to baseline
Designers and programmers always want to do their best work. It
doesn’t matter if the button is on the center of the landing page or
two pages down a settings screen, the designer will give it their best
attention. And the best programmers want the code base to feel like
a cohesive whole, completely logically consistent with every edge
case covered.

Pride in the work is important for quality and morale, but we need
to direct it at the right target. If we aim for an ideal perfect design,
we’ll never get there. At the same time, we don’t want to lower our
standards. How do we make the call to say what we have is good
enough and move on?

It helps to shift the point of comparison. Instead of comparing up
against the ideal, compare down to baseline—the current reality
for customers. How do customers solve this problem today, without
this feature? What’s the frustrating workaround that this feature
eliminates? How much longer should customers put up with some-
thing that doesn’t work or wait for a solution because we aren’t sure
if design A might be better than design B?

Seeing that our work so far is better than the current alternatives
makes us feel better about the progress we’ve made. This motivates
us to make calls on the things that are slowing us down. It’s less
about us and more about value for the customer. It’s the difference
between “never good enough” and “better than what they have
now.” We can say “Okay, this isn’t perfect, but it definitely works
and customers will feel like this is a big improvement for them.”

1 4 4

Limits motivate trade-offs
Recall that the six-week bet has a circuit breaker—if the work
doesn’t get done, the project doesn’t happen.

This forces the team to make trade-offs. When somebody says
“wouldn’t it be better if…” or finds another edge case, they should
first ask themselves: Is there time for this? Without a deadline,
they could easily delay the project for changes that don’t actually
deserve the extra time.

We expect our teams to actively make trade-offs and question the
scope instead of cramming and pushing to finish tasks. We create
our own work for ourselves. We should question any new work that
comes up before we accept it as necessary.

Scope grows like grass
Scope grows naturally. Scope creep isn’t the fault of bad clients,
bad managers, or bad programmers. Projects are opaque at the
macro scale. You can’t see all the little micro-details of a project
until you get down into the work. Then you discover not only

Make scope cuts by comparing down to baseline

instead of up to some perfect ideal

1 4 5C H A P T E R 1 4 - D E C I D E W H E N T O S T O P

complexities you didn’t anticipate, but all kinds of things that
could be fixed or made better than they are.

Every project is full of scope we don’t need. Every part of a product
doesn’t need to be equally prominent, equally fast, and equally
polished. Every use case isn’t equally common, equally critical, or
equally aligned with the market we’re trying to sell to.

This is how it is. Rather than trying to stop scope from growing,
give teams the tools, authority, and responsibility to constantly cut
it down.

Cutting scope isn’t lowering quality
Picking and choosing which things to execute and how far to
execute on them doesn’t leave holes in the product. Making choices
makes the product better. It makes the product better at some
things instead of others. Being picky about scope differentiates the
product. Differentiating what is core from what is peripheral moves
us in competitive space, making us more alike or more different
than other products that made different choices.

Variable scope is not about sacrificing quality. We are extremely
picky about the quality of our code, our visual design, the copy in
our interfaces, and the performance of our interactions. The trick is
asking ourselves which things actually matter, which things move
the needle, and which things make a difference for the core use
cases we’re trying to solve.

Scope hammering
People often talk about “cutting” scope. We use an even stronger
word—hammering—to reflect the power and force it takes to repeat-
edly bang the scope so it fits in the time box.

1 4 6

As we come up with things to fix, add, improve, or redesign during
a project, we ask ourselves:

• Is this a “must-have” for the new feature?

• Could we ship without this?

• What happens if we don’t do this?

• Is this a new problem or a pre-existing one
that customers already live with?

• How likely is this case or condition to occur?

• When this case occurs, which customers see it? Is it
core—used by everyone—or more of an edge case?

• What’s the actual impact of this case or con-
dition in the event it does happen?

• When something doesn’t work well for a particular use case,
how aligned is that use case with our intended audience?

The fixed deadline motivates us to ask these questions. Variable
scope enables us to act on them. By chiseling and hammering the
scope down, we stay focused on just the things we need to do to
ship something effective that we can be proud of at the end of the
time box.

Throughout the cycle, you’ll hear our teams talking about must-
haves and nice-to-haves as they discover work. The must-haves are
captured as tasks on the scope. The scope isn’t considered “done”
until those tasks are finished. Nice-to-haves can linger on a scope
after it’s considered done. They’re marked with a tilde (~) in front.
Those tasks are things to do if the team has extra time at the end

1 4 7C H A P T E R 1 4 - D E C I D E W H E N T O S T O P

and things to cut if they don’t. Usually they never get built. The act
of marking them as a nice-to-have is the scope hammering.

QA is for the edges
At Basecamp’s current size (millions of users and about a dozen
people on the product team), we have one QA person. They come in
toward the end of the cycle and hunt for edge cases outside the
core functionality.

QA can limit their attention to edge cases because the designers
and programmers take responsibility for the basic quality of their
work. Programmers write their own tests, and the team works to-
gether to ensure the project does what it should according to what
was shaped. This follows from giving the team responsibility for
the whole project instead of assigning them individual tasks (see
Chapter 9, Hand Over Responsibility).

For years we didn’t have a QA role. Then after our user base grew
to a certain size, we saw that small edge cases began to impact
hundreds or thousands of users in absolute numbers. Adding the

A finished scope with one nice-to-have (marked with a “~”)

that was never completed

1 4 8

extra QA step helped us improve the experience for those users and
reduce the disproportional burden they would create for support.

Therefore we think of QA as a level-up, not a gate or a check-point
that all work must go through. We’re much better off with QA than
without it. But we don’t depend on QA to ship quality features that
work as they should.

QA generates discovered tasks that are all nice-to-haves by default.
The designer-programmer team triages them and, depending on
severity and available time, elevates some of them to must-haves.
The most rigorous way to do this is to collect incoming QA issues on
a separate to-do list. Then, if the team decides an issue is a must-
have, they drag it to the list for the relevant scope it affects. This
helps the team see that the scope isn’t done until the issue
is addressed.

We treat code review the same way. The team can ship without
waiting for a code review. There’s no formal check-point. But code
review makes things better, so if there’s time and it makes sense,
someone senior may look at the code and give feedback. It’s more
about taking advantage of a teaching opportunity than creating a
step in our process that must happen every time.

When to extend a project
In very rare cases, we’ll extend a project that runs past its deadline
by a couple weeks. How do we decide when to extend a project and
when to let the circuit breaker do its thing?

First, the outstanding tasks must be true must-haves that withstood
every attempt to scope hammer them.

Second, the outstanding work must be all downhill. No unsolved

1 4 9C H A P T E R 1 4 - D E C I D E W H E N T O S T O P

problems; no open questions. Any uphill work at the end of the
cycle points to an oversight in the shaping or a hole in the concept.
Unknowns are too risky to bet on. If the work is uphill, it’s better
to do something else in the next cycle and put the troubled project
back in the shaping phase. If you find a viable way to patch the
hole, then you can consider betting more time on it again in the
future.

Even if the conditions are met to consider extending the project, we
still prefer to be disciplined and enforce the appetite for most proj-
ects. The two-week cool-down usually provides enough slack for a
team with a few too many must-haves to ship before the next cycle
starts. But this shouldn’t become a habit. Running into cool-down
either points back to a problem in the shaping process or a perfor-
mance problem with the team.

1 5 0

Let the storm pass
Shipping can actually generate new work if you’re not careful.
Feature releases beget feature requests. Customers say “Okay, that’s
great, but what about that other thing we’ve been asking for?”
Bugs pop up. Suggestions for improvements come in. Everyone is
focused on the new thing and reacting to it.

The feedback can be especially intense if the feature you shipped
changes existing workflows. Even purely visual changes sometimes
spur intense pushback. A small minority of customers might over-
react and say things like “You ruined it! Change it back!”

It’s important to stay cool and avoid knee-jerk reactions. Give it a
few days and allow it to die down. Be firm and remember why you
made the change in the first place and who the change is helping.

Stay debt-free
It can be tempting to commit to making changes in response to
feedback, but then you no longer have a clean slate for the next
cycle. Remember: these are just raw ideas coming in. The way to
handle them is with a gentle “no.” Saying “no” doesn’t prevent you
from continuing to contemplate them and maybe shape them up
into future projects. Saying “yes,” on the other hand, takes away
your freedom in the future. It’s like taking on debt.

Remember, the thing you just shipped was a six-week bet. If this
part of the product needs more time, then it requires a new bet. Let
the requests or bugs that just came up compete with everything else
at the next betting table to be sure they’re strategically important.

Move On

1 5 1C H A P T E R 1 5 - M O V E O N

Feedback needs to be shaped
Here we come full circle. The raw ideas that just came in from cus-
tomer feedback aren’t actionable yet. They need to be shaped. They
are the raw inputs that we talked about in step one of the shaping
process: Set Boundaries.

If a request is truly important, you can make it your top priority on
the shaping track of the next cycle. Bet on something else for the
teams to build and use that time to properly shape the new idea.
Then, when the six weeks are over, you can make the case at the
betting table and schedule the shaped version of the project for the
greatest chance of success.

1 5 2

Key concepts
The Shape Up method presented in this book is tightly interwoven.
It may take some thought and experimentation to pull out the right
pieces and adapt them to your team.

Whether your team can adopt the method at once or not, I hope
that the language and concepts in this book gave you some things
to take home immediately:

• Shaped versus unshaped work

• Setting appetites instead of estimates

• Designing at the right level of abstraction

• Concepting with breadboards and fat marker sketches

• Making bets with a capped downside (the circuit breaker)
and honoring them with uninterrupted time

• Choosing the right cycle length (six weeks)

• A cool-down period between cycles

• Breaking projects apart into scopes

• Downhill versus uphill work and com-
municating about unknowns

• Scope hammering to separate must-haves from nice-to-haves

Conclusion

1 5 3C H A P T E R 1 6 - C O N C L U S I O N

Get in touch
We’d love to hear what you think so we can make the Shape Up
method easier to adopt. What did we miss? What still isn’t clear?
What do you wish we had talked about that we didn’t? We’d also
love to hear about your successes and challenges as you try to
apply it to your teams and projects.

Send us an email at shapeup@basecamp.com.

Appendices

1 5 6

We built Basecamp to implement the Shape Up method. Instead of
scattering our work across multiple tools, Basecamp centralizes all
project communication, task management, and documentation in
one place. Here’s how we use it.

A Basecamp Team for shaping
1. Create a Basecamp Team for shaping. We

call ours “Product Strategy.”

2. Add the people doing the shaping, any trusted people
who give feedback on pitches, and the people who
bet at the betting table. Keep this group small and an-
nounce the bets more widely elsewhere (we use Base-
camp’s HQ for that), when it’s time to kick off a cycle.

3. Post pitches as Messages on the Message Board.
We created a Message Category called “Pitch”
with the light bulb emoji for the icon.

4. Use the Campfire chat room to bounce ideas and co-
ordinate the betting table between cycles. We conduct
the actual betting table meeting over video chat.

How to Implement
Shape Up in Basecamp

1 5 7C H A P T E R 1 7 - H O W T O I M P L E M E N T S H A P E U P I N B A S E C A M P

Pitches on the Message Board of the Product Strategy team in Basecamp

A sketch drawn on an iPad in the middle of a pitch

1 5 8

Basecamp Projects for the cycle projects
1. Create a Basecamp Project for each project in the six-

week cycle. We usually prepend a name or number
for the cycle like this: “Cycle 4: Autopay.”

2. Add the designer and program-
mers who are working on this
project to the Basecamp Project.

3. Post a kick-off message to the
Message Board with the pitch
or a restatement of the shaped
work for the team’s reference.

Creating the project

Jason announces the bets for the next cycle in the HQ

—a Team in Basecamp that includes the whole company

1 5 9C H A P T E R 1 7 - H O W T O I M P L E M E N T S H A P E U P I N B A S E C A M P

Adding the designer and programmer

The first thing on the project is a kick-off message with the shaped concept

1 6 0

To-Do Lists for scopes
1. After the team gets oriented they start spiking, dis-

cover tasks, and map them into scopes.

2. In the Basecamp Project, the team creates a To-Do List for each
scope, like “Start Autopay” or “ACH Option.” Sometimes we use
the description field on the To-Do List to summarize the scope.

3. Add design and programming tasks to each scope as To-Do
Items. For example, “Start Autopay” has one task for design
the UI and another task for wiring it to the existing recur-
ring billing API. They can use the discussion thread on each
To-Do Item to post updates or ask each other questions.

4. Repeat as the team discovers new scopes and tasks.

The team uses the chat room in the Basecamp project

to communicate as they get started

1 6 1C H A P T E R 1 7 - H O W T O I M P L E M E N T S H A P E U P I N B A S E C A M P

Track scopes on the Hill Chart
1. Navigate to the To-Do List page for each scope and click

the options menu (•••) in the upper right. Click “Track
this on the Hill Chart.” That will display a Hill Chart at
the top of the overall To-Dos section of the Project, with
a dot corresponding to that scope (To-Do List).

2. Repeat for each scope (To-Do List).

3. Click “Update” on the Hill Chart and drag the dots to show
progress from “unknown” to “known” to “done.” Use the
annotation feature to add commentary when necessary.

To-Do Lists for each scope with designer and programmer tasks under each.

Note: these are just the tasks discovered so far.

1 6 2

4. To see the history of updates to the Hill Chart, click the time-
stamp above the Hill Chart where it says “last update.”

Tracking a scope (To-Do List) on the Hill Chart via the options menu

on the To-Do List’s page

After enabling the Hill Chart on each To-Do List, a dot appears for each scope

1 6 3C H A P T E R 1 7 - H O W T O I M P L E M E N T S H A P E U P I N B A S E C A M P

Drag the dots to update the Hill Chart

The updated Hill Chart appears at the top of the To-Dos page

1 6 4

Other tools make it hard to see everything about the project in one
place. Basecamp combines chat, messages, to-dos, and documents
in one interface that’s powerful enough for technical people and
friendly enough for everyone else to use. Programmers, design-
ers, QA and managers feel equally at home and can work together
seamlessly on projects. Visit basecamp.com to try Basecamp free
for 30 days.

Clicking the timestamp at the top of the Hill Chart shows a history of updates.

The most recent update is at the top.

1 6 5C H A P T E R 1 8 - A D J U S T T O Y O U R S I z E

Basic truths vs. specific practices
To apply Shape Up to your company, it helps to separate out the
basic truths from the specific practices.

Work has to come from somewhere, and it takes work to figure
out what the right work is. This is shaping. Shaping the work sets
clearer boundaries and expectations for whoever does the work—
whether that’s a separate team or just your future self. If we don’t
make trade-offs up front by shaping, the universe will force us to
make trade-offs later in a mad rush when we’re confronted by dead-
lines, technical limitations, or resource constraints.

The same is true with betting. Six weeks might not be the exact
time frame for your team. But the consequences of making unclear
or open-ended commitments are the same for everyone. Regardless
of the specific time frame we bet on, we should be deliberate about
what we bet on and cap our downside with a circuit breaker.

In the building phase, there will be unknowns to deal with whether
you track them on a hill chart or not. We need to distinguish the
knowns from the unknowns so we can sequence the work in the
right order and reserve capacity for the unknowns.

These truths apply regardless of the size of your organization. The
specific practices, on the other hand, are scale-dependent. Let’s
have a look at what it means to implement Shape Up at a very small
start-up and an organization that’s grown big enough for special-
ized roles and more structure.

Adjust to Your Size

1 6 6

Small enough to wing it
When your team is just two or three people, everybody does a bit of
everything. Since a few people are wearing many hats and per-
forming many roles, it’s difficult to commit long chunks of uninter-
rupted time to specific projects. The person doing the programming
might also be answering customer requests and dealing with an
infrastructure issue all at the same time.

It’s also easier to communicate and change course when you’re
small. You can drop something in the group chat or talk about it in
person and everyone’s immediately on the same page.

For these reasons, a tiny team can throw out most of the structure.
You don’t need to work six weeks at a time. You don’t need a cool-
down period, formal pitches or a betting table. Instead of parallel
tracks with dedicated shapers and builders, the same people can
alternate back and forth. Be deliberate about which hat you’re
wearing and what phase you’re in. Set an appetite, shape what to
do next, build it, then shape the next thing. Your bets might be
different sizes each time: maybe two weeks here, three weeks there.
You’re still shaping, betting, and building, but you’re doing it more
fluidly without the rigid structure of cycles and cool-downs.

The phases of the work still hold true even if you don’t work in cycles

or have dedicated people to do the shaping and building

1 6 7C H A P T E R 1 8 - A D J U S T T O Y O U R S I z E

Big enough to specialize
After you hire more people, all of this fluidity flips from an asset to
a liability. Winging it with ad-hoc meetings and chat room discus-
sions doesn’t work anymore. Coordination starts to eat up more of
your time and things begin to slip through the cracks.

This is when it makes sense to take on the structure of six-week
cycles, cool-downs, and a formal betting table. With more people
available to build, someone needs to carve out more time to do
the work of figuring out what to build. This could mean a founder
spends more time shaping than building, or it could mean elevat-
ing an employee from doing in-cycle design work to more out-of-cy-
cle shaping work.

At Basecamp’s current size (about 50 people in the whole company,
roughly a dozen in the product team) we’ve been able to specialize
roles so teams of designers and programmers can work without any
interruption in the cycles. A dedicated team called SIP (Security, In-
frastructure, and Performance) handles technical work that’s lower
in the stack and more structural. Our Ops team keeps the lights on.
We have technical people on the Support team who can investigate
problems raised by customers. All this means that we don’t need to
interrupt the designers and programmers on our Core Product team
who work on shaped projects within the cycles.

1 6 8

With dedicated shapers and builders, the picture is more structured.
Shapers work on an “out of cycle” track. Cool-down between cycles
gives everyone room to fix bugs and address loose ends that pop up.
The betting table is held during cool-down and then bets are placed
for the next cycle.

With more people, shaping and building happen on separate tracks

and bets are made to fill six-week cycles

1 6 9C H A P T E R 1 9 - H O W T O B E G I N T O S H A P E U P

Option A: One six-week experiment
You don’t need to change everything all at once. If the whole
product team isn’t ready to make a big change, just start off with a
single six-week experiment. These are the steps to take:

1. Shape one significant project that can be com-
fortably finished within six weeks. Be conserva-
tive and allow extra time on your first run.

2. Carve out one designer and two programmers’ time
for the entire six weeks. Guarantee that nobody will in-
terrupt them for the length of the experiment.

3. Instead of a proper betting table, simply plan for the team
to do the work you shaped for this one experiment.

4. Kick off by presenting your shaped work to the team, with all
the ingredients of a pitch. Set the expectation that they will
discover and track their own tasks. (Hand Over Responsibility)

5. Dedicate a physical space or a chat room to the cross-func-
tional team so they can work closely together.

6. Encourage them to Get One Piece Done by wiring
UI and code together early in the project.

You don’t need to worry about Mapping the Scopes or Showing
Progress right away. You should see a big leap in progress just by
dedicating uninterrupted time, shaping the work in advance, and
letting the team work out the details.

How to Begin to Shape Up

1 7 0

Once the team gets used to Getting One Piece Done, the stage will
be set for properly mapping scopes down the road. It’s the same
idea, just repeated. Later still, when they are good at defining
scopes, you can use the hill chart to Show Progress on those scopes.

This approach lets you demonstrate success with one team and a
single six-week commitment. With credibility gained from a good
outcome, it’ll be easier to lobby for a bigger change and convert the
wider team to working this way.

Option B: Start with shaping
Sometimes it’s not possible to get a team together to work for six
weeks because somebody else, a CTO perhaps, controls the pro-
grammers’ time. In that case, you can start by shaping a compelling
project with clearer boundaries than past projects. Present the
project and put it through your company’s existing scheduling
process (even if it’s a paper shredder). Better-shaped work can
shine a light on the engineering team and help them open up to
things like longer cycles or a more deliberate betting process.

Option C: Start with cycles
Another approach is to start by working in six week cycles. For
teams that formerly used two-week sprints, this removes the over-
head of constant planning meetings and gives programmers more
time to build momentum and hit their stride. Once the team has
more room to breathe, it’ll be natural to think more about how to
shape the work to take advantage of this new capacity.

1 7 1C H A P T E R 1 9 - H O W T O B E G I N T O S H A P E U P

Fix shipping first
Build your shipping muscles before you worry too much about im-
proving your research or discovery process. You can have the best
customer insight in the world, but if you can’t turn it into a project
and ship, it won’t matter. First get the team into a rhythm of finish-
ing things. Once you have the capability to ship, then you can start
improving the inputs to your shaping process.

Focus on the end result
Sometimes it can be scary to give the teams more free rein to set
their own tasks and schedule. You might wonder: What if they
don’t use up all the time we dedicate for the cycle? What if one of
the programmers or designers sits idle at some point in the cycle?

To overcome these worries, shift the mindset from the micro to the
macro. Ask yourself: How will we feel if we ship this project after
six weeks? Will we feel good about what we accomplished? When
projects ship on time and everyone feels they made progress, that’s
the success. It doesn’t matter what exactly happened down at the
scale of hours or days along the way. It’s the outcome that matters.

1 7 2

Glossary
Appetite
The amount of time we want to spend on a project, as opposed to
an estimate.

Baseline
What customers are doing without the thing we’re
currently building.

Bet
The decision to commit a team to a project for one cycle with no
interruptions and an expectation to finish.

Betting table
A meeting during cool-down when stakeholders decide which
pitches to bet on in the next cycle.

Big batch
One project that occupies a team for a whole cycle and ships at
the end.

Breadboard
A UI concept that defines affordances and their connections
without visual styling.

Circuit breaker
A risk management technique: Cancel projects that don’t ship in
one cycle by default instead of extending them by default.

Cleanup mode
The last phase of building a new product, where we don’t shape
or bet on any particular projects but instead allocate unstructured
time to fix whatever is needed before launch.

1 7 3C H A P T E R 2 0 - G L O S S A R Y

Cool-down
A two-week break between cycles to do ad-hoc tasks, fix bugs, and
hold a betting table.

Cycle
A six week period of time where teams work uninterruptedly on
shaped projects.

De-risk
Improve the odds of shipping within one cycle by shaping and
removing rabbit holes.

Discovered tasks
Tasks the team discovers they need to do after they start getting
involved in the real work.

Downhill
The phase of a task, scope or project where all unknowns are solved
and only execution is left.

Fat marker sketch
A sketch of a UI concept at very low fidelity drawn with a thick line.

Hill chart
A diagram showing the status of work on a spectrum from
unknown to known to done.

Iceberg
A scope of work where the back-end work is much more complex
than the UI or vice versa.

Imagined tasks
Work the teams decide they need to do after just thinking about the
project. See discovered tasks.

1 7 4

Layer cake
A scope of work you can estimate by looking at the surface area of
the UI.

Level of abstraction
The amount of detail we leave in or out when describing a problem
or solution.

Must-haves
Tasks that must be completed for a scope to be considered done.

Nice-to-haves
Task left for the end of the cycle. If there isn’t time to do them, they
get cut. Marked with a ‘~’ at the beginning.

Pitch
A document that presents a shaped project idea for consideration at
the betting table.

Production mode
A phase of building a new product where the core architecture is
settled and we apply the standard Shape Up process.

Rabbit hole
Part of a project that is too unknown, complex, or open-ended
to bet on.

R&D mode
A phase of building a new product where a senior team spikes the
core features to define the core architecture.

Raw ideas
Requests or feature ideas that are expressed in words and haven’t
been shaped.

1 7 5C H A P T E R 2 0 - G L O S S A R Y

Scopes
Parts of a project that can be built, integrated, and finished inde-
pendently of the rest of the project.

Scope hammering
Forcefully questioning a design, implementation, or use case to cut
scope and finish inside the fixed time box.

Shape
Make an abstract project idea more concrete by defining key ele-
ments of the solution before betting on it.

Six weeks
The length of our cycles. Six weeks is long enough to finish some-
thing meaningful and short enough to feel the deadline from the
beginning.

Small batch
A set of 1-2 week projects that a single team ships by the end of a six
week cycle.

Time horizon
The longest period of time where we can feel a deadline pushing on
us from the beginning. Six weeks.

Uphill
The phase of a task, scope or project where there are still unkowns
or unsolved problems. See downhill.

1 7 6

Ryan Singer has worked on all levels of the software stack, from UI
design to back-end programming to strategy.

Through over 17 years at Basecamp, he’s designed features used by
millions and invented processes the teams use to design, develop,
and ship the right things.

These days he’s focused on product strategy: understanding
what Basecamp’s customers are trying to do and how to make the
product fit them better.

Thanks for reading. I’d love to hear about your questions and expe-
riences as you try to apply the Shape Up method. Reach out to me
on Twitter at @rjs or send an email to shapeup@basecamp.com.

About the Author

	Introduction
	Growing pains
	Six-week cycles
	Shaping the work
	Making teams responsible
	Targeting risk
	How this book is organized

	Foreward by Jason Fried
	Acknowledgements
	Shaping
	Principles of Shaping
	Words are too abstract
	Case study: The Dot Grid Calendar
	Property 1: It’s rough
	Property 2: It’s solved
	Property 3: It’s bounded
	Who shapes
	Two tracks
	Steps to shaping

	Set Boundaries
	Fixed time, variable scope
	“Good” is relative
	Responding to raw ideas
	Narrow down the problem
	Case study: Defining “calendar”
	Watch out for grab-bags
	Boundaries in place

	Find the Elements
	Breadboarding
	Fat marker sketches
	Elements are the output
	Room for designers
	Not deliverable yet
	No conveyor belt

	Risks and Rabbit Holes
	Different categories of risk
	Look for rabbit holes
	Case study: Patching a hole
	Declare out of bounds
	Cut back
	Present to technical experts
	De-risked and ready to write up

	Write the Pitch
	Ingredient 1. Problem
	Ingredient 2. Appetite
	Ingredient 3. Solution
	Help them see it
	Ingredient 4. Rabbit holes
	Ingredient 5. No Gos
	Examples
	Ready to present
	How we do it in Basecamp

	Betting
	Bets, Not Backlogs
	A few potential bets
	Decentralized lists
	Important ideas come back

	The Betting Table
	Cool-down
	Team and project sizes
	The betting table
	The meaning of a bet
	Uninterrupted time
	The circuit breaker
	What about bugs?
	Keep the slate clean

	Place Your Bets
	R&D mode
	Production mode
	Cleanup mode
	Examples
	Questions to ask
	Post the kick-off message

	Building
	Hand Over Responsibility
	Done means deployed
	Kick-off
	Getting oriented
	Imagined vs discovered tasks

	Get One Piece Done
	Case study: Clients in projects
	Programmers don’t need to wait
	Affordances before pixel-perfect screens
	Program just enough for the next step
	Start in the middle

	Map The Scopes
	The scope map
	The language of the project
	Case study: Message drafts
	Discovering scopes
	How to know if the scopes are right
	Layer cakes
	Icebergs
	Chowder
	Mark nice-to-haves with ~

	Show Progress
	Estimates don’t show uncertainty
	Work is like a hill
	Scopes on the hill
	Status without asking
	Nobody says “I don’t know”
	Prompts to refactor the scopes
	Build your way uphill
	Solve in the right sequence

	Decide When to Stop
	Compare to baseline
	Limits motivate trade-offs
	Scope grows like grass
	Cutting scope isn’t lowering quality
	Scope hammering
	QA is for the edges
	When to extend a project

	Move On
	Feedback needs to be shaped

	Conclusion
	Get in touch

	Appendices
	How to Implement
Shape Up in Basecamp
	Basecamp Projects for the cycle projects
	To-Do Lists for scopes
	Track scopes on the Hill Chart

	Adjust to Your Size
	Basic truths vs. specific practices
	Small enough to wing it
	Big enough to specialize

	How to Begin to Shape Up
	Option B: Start with shaping
	Option C: Start with cycles
	Fix shipping first
	Focus on the end result

	Glossary
	About the Author

